Modulation with continuous wave

• representations in time and frequency for two types of continuous wave modulation:
 – Amplitude modulation, AM -amplitude
 – Angle modulation,
 • frequency modulation (FM) - instantaneous frequency
 • phase modulation (PM) - instantaneous phase

• Purpose of a communication system:
 – transport a signal (a message) over a channel
 – deliver a reliable estimate to a user

• Example:
 – radio system: efficient in a freq. range > 30 kHz,
 – baseband signals = audio signals (0-20kHz)
 – Frequency shifting => modulation

• The message signal that contains information, generated by sources of information, is a baseband signal

• Modulation – information transfer from the modulating wave to carrier.
• Modulation / demodulation
 – (1) shifting frequency range of message signal into another one- suitable for transmission over the channel
 – (2) corresponding shift back to the original frequency range after reception of the signal
• Two most common used forms of carriers
 – Sinusoidal wave
 – Periodic pulse wave
• two main classes of modulation
 – Continuous wave (CW)
 – Pulse modulation

Amplitude modulation
• The amplitude of a carrier sine wave is modified according to a message signal= information

Angle modulation
• instantaneous frequency / phase of the carrier sine wave varies with the message
 – Frequency modulation
 – Phase modulation
Essential components of a communication system, using continuous-wave (CW) modulation

The noise from the channel decreases performance of the overall scheme

Amplitude modulation vs Angle modulation (exponential)
Amplitude modulation

Sinusoidal carrier wave: \(c(t) = A_c \cos \omega_c t \)

Modulating signal: \(x(t) \)

AM signal: \(s(t) = A_c \left[1 + k_a x(t) \right] \cos(\omega_c t) \).

\(k_a \left[V^{-1} \right] \) - amplitude sensitivity of the modulator

Modulation degree or percentage (index):

\[m = \left| k_a x(t) \right|_{\text{max}} \cdot 100 \% ; 0 < m \leq 1; m = k_a A_m \text{ (message=sine wave)} \]

\(f_M = \) maximum frequency of the modulating signal

varying percentage of modulation

The amplitude of a harmonic signal is positive: \(A_c \left[1 + k_a x(t) \right] \geq 0 \)

\[\Rightarrow \left| k_a x(t) \right| \leq 1 \ \forall t \]

If \(\left| k_a x(t) \right| > 1 \Rightarrow \text{overmodulation} \)

1) \(|k_a x(t)| \leq 1 \)

2) \(|k_a x(t)| > 1 \): overmodulation; **envelope distortions**, phase inversion in the carrier
Measuring modulation index

\[m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} \times 100 \% \]

Valid when the modulating signal is a sine wave

AM Spectrum

\[S(\omega) = \mathcal{F} \{ A_t \cos \omega_c t \} + \mathcal{F} \{ A_k x(t) \cos \omega_c t \} = \]
\[= \pi A_t \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right] + \frac{1}{2\pi} A_k X(\omega) * \pi \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right]. \]

\[S(\omega) = \pi A_t \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right] + \frac{k_A}{2} \left[X(\omega - \omega_c) + X(\omega + \omega_c) \right]. \]

\[S(f) = \frac{A_t}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{k_A}{2} \left[X(f - f_c) + X(f + f_c) \right]. \]

The notation \(S(f) \) is used in communications.
Magnitude spectrum for the baseband signal and AM signal

\[S(\omega) = \mu A_0 \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right] + \frac{k_m A_m}{2} \left[X(\omega - \omega_c) + X(\omega + \omega_c) \right] \]

Condition to recover correctly the message signal & Bandwidth

- Upper and lower sidebands do not overlap if \(\omega_C - \omega_M > 0 \)

\[f_c \gg f_M = B \text{ (message's bandwidth)} \]

- Bandwidth of the modulated signal, \(B_T \) is double of the bandwidth of the message (modulating) signal, \(B \)

\[B_T = 2B \]
AM advantages and disadvantages

simple implementation
- used from the beginning in radio transmission
- cheaper

- bandwidth is 2x bandwidth of modulating wave

- **low energy efficiency**
- AM spectrum: the carrier ~ no information ⇒ waste of power
- Solution: suppress one of the sidebands and carrier ⇒ linear AM

Modulator

- nonlinear device, i.e. diode
\[u_1(t) = A_c \cos \omega_c t + x(t) \Rightarrow u_2(t) = \left[A_c \cos \omega_c t + x(t) \right] g(t) \]

\[g(t) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos \left[(2n-1) \omega_c t \right] \]

\[u_2(t) \approx \frac{A_c}{2} \cos \omega_c t + \frac{A_c}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \left\{ \cos 2n\omega_c t + \cos \left[(2n-2) \omega_c t \right] \right\} + \frac{x(t)}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x(t) \cos \left[(2n-1) \omega_c t \right] \]

For \(\omega_c \gg \omega_M \), in the neighborhood of \(\omega_c \):

\[\frac{A_c}{2} \cos \omega_c t + \frac{2}{\pi} x(t) \cos \omega_c t \]

AM signal - separated by band-pass filtering centered on \(\omega_c \)

Demodulator: envelope detector

- Low-pass filtering of \(u_2(t) \) -> capacitor
- Removal of the DC component
Power of AM signal

\[x(t) = A_m \cos \omega_m t \]
\[s(t) = [A_c + K_u A_m \cos \omega_m t] \cos(\omega_c t) \]
\[= A_c \cos(\omega_c t) + \frac{mA}{2} \cos[(\omega_c - \omega_m) t] + \frac{mA}{2} \cos[(\omega_c + \omega_m) t] \]

Power of the modulating signal \(P_m = \frac{A_m^2}{2} \)

Power of the AM signal : \(P_s = \frac{A_c^2}{2} + \frac{m^2 A_c^2}{8} + \frac{m^2 A_c^2}{8} = \frac{A_c^2}{4} \left(2 + m^2\right)\)

For detection, use only one sideband, amplitude \(mA_c / 2 \).

Useful power \(P_u = \frac{m^2 A_c^2}{8} \)

Efficiency at receiver \(\eta = \frac{P_u}{P_s} = \frac{m^2}{2(2 + m^2)} ; 0 < m^2 \leq 1 \)

Maximum efficiency \(\eta_{\text{max}} = \frac{1}{6} \cdot 100 \approx 16.67\% \) (m=1)

Power from both sidebands = useful , \(P_u = m^2 A^2 / 4 \),
double efficiency : \(\eta = \frac{m^2}{2 + m^2} , \eta_{\text{max}} = 33.33\% \)
observation

- This amplitude modulation is not linear

\[s_1(t) = A_c \left[1 + k_a x_1(t) \right] \cos \omega_c t; \]
\[s_2(t) = A_c \left[1 + k_a x_2(t) \right] \cos \omega_c t. \]

If \(s_{1+2}(t) \) results from the modulation with the sum \(x_1(t) + x_2(t) \) we have

\[s_{1+2}(t) = A_c \left[1 + k_a \left[x_1(t) + x_2(t) \right] \right] \cos \omega_c t \neq s_1(t) + s_2(t) \]

Linear Amplitude Modulation

\[s(t) = a(t) \cos \left[\omega_c t + \phi(t) \right] \]
\[= \left[a(t) \cos \phi(t) \right] \cos \omega_c t - \left[a(t) \sin \phi(t) \right] \sin \omega_c t \]
\[= s_i(t) \cos \omega_c t - s_Q(t) \sin \omega_c t, \]

canonical form of a bandpass signal

\(s_i(t) \) – in phase component (I-channel),
\(s_Q(t) \) – in quadrature component (Q-channel).

linear modulation \(\iff s_i(t) \) and \(s_Q(t) \) - linear dependent on \(x(t) \)
Linear Amplitude Modulation

<table>
<thead>
<tr>
<th>Modulation type</th>
<th>In phase component</th>
<th>In quadrature component</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double sideband suppressed carrier DSB-SC</td>
<td>$x(t)$</td>
<td>0</td>
<td>$x(t)$ - message</td>
</tr>
<tr>
<td>Single sideband SSB</td>
<td>$\frac{1}{2} x(t)$</td>
<td>$\frac{1}{2} \hat{x}(t)$</td>
<td>$\hat{x}(t) = \mathcal{H}{x(t)}$</td>
</tr>
<tr>
<td>Superior sideband is transmitted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior sideband is transmitted</td>
<td>$\frac{1}{2} x(t)$</td>
<td>$-\frac{1}{2} \hat{x}(t)$</td>
<td>$\hat{x}(t) = \mathcal{H}{x(t)}$</td>
</tr>
<tr>
<td>with vestigial sideband VSB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the vestige of the superior sideband is transmitted</td>
<td>$\frac{1}{2} x(t)$</td>
<td>$\frac{1}{2} x'(t)$</td>
<td></td>
</tr>
<tr>
<td>the vestige of the inferior sideband is transmitted</td>
<td>$\frac{1}{2} x(t)$</td>
<td>$-\frac{1}{2} x'(t)$</td>
<td></td>
</tr>
</tbody>
</table>

DSB-SC – suppressed carrier, bandwidth is the same as full AM

VSB – large bandwidth signals

Observations

- in phase component $s_i(t)$ depends only on the message signal
- in quadrature component $s_Q(t) =$ filtered version of the message signal. The spectral modification of $s(t)$ compared to $x(t)$ is given only by $s_Q(t)$
- The purpose of $s_Q(t)$ if it exists, is to interfere with the in phase component to eliminate / reduce the power from a sideband of the modulated signal
Double sideband-suppressed carrier modulation

\[s(t) = A_c x(t) \cos(\omega_c t) \Rightarrow S(\omega) = \frac{A_c}{2} [X(\omega - \omega_c) + X(\omega + \omega_c)] \]

- carrier multiplied with the message signal
- carrier absent in the spectrum
- But \(S(\omega) \) has spectral components in \(\omega = \omega_c \)
- transmitted bandwidth = 2xbandwidth of the modulating wave
Coherent (Synchronous) Detection

- reconstruct modulating signal $x(t)$

\[v(t) = s(t) \cos(\omega_c t + \theta) = A_x x(t) \cos \omega_c t \cos(\omega_c t + \theta) \]

\[= \frac{A_x}{2} x(t) \cos \theta + \frac{A_x}{2} x(t) \cos(2\omega_c t + \theta) \]

base band $(-\omega_m, \omega_m)$ centered in $2\omega_c$, $(2\omega_c - \omega_m, 2\omega_c + \omega_m)$

$\Phi_{\omega_c}(t) = \frac{A_x}{2} x(t) \cos \theta$ (LPF output)

Desynchronisation between local oscillators - receiver & emission unit \Rightarrow phase error $\theta \Rightarrow$ decreasing of detector response.

maximum for $\theta = 0$; zero for $\theta = \pm \frac{\pi}{2}$.

Local oscillator of the receiver synchronized with the local oscillator that generates the carrier signal in frequency and in phase.
Quadrature-Carrier multiplexing

• Also known as Quadrature-amplitude modulation (QAM)
• Transmit two DSB-SC modulated waves on the same bandwidth ⇒ bandwidth-conservation scheme
• Modulators with quadrature phase:
 – carriers in quadrature, same frequency, differ in phase by ±π/2 (±90°)
• Demodulator: two coherent detectors with 90 degree phase shift
• θ=±π/2: output of synchronous detector = null (quadrature effect)

\[x_1(t), x_2(t) \text{ - independently modulating signals.} \]
\[s(t) = A_c x_1(t) \cos \omega_c t + A_c x_2(t) \sin \omega_c t \]
Single side band modulation – SSB

• one sideband transmitted
• frequency-discrimination scheme with 2 steps
• Product modulator \Rightarrow double sideband-suppressed carrier
• Bandpass filter: passes the sideband selected for transmission and suppresses the remaining sidebands
• separation lower and upper sideband \Rightarrow energy gap in the spectrum of the message signal $x(t)$
• Speech signals (telephony): energy gap= -300, 300 Hz
• modulated signal: energy gap $2\omega_m$

Restrictions for BPF of sideband selection:
1. selected sideband \subset passing band of the filter,
2. unwanted sideband \subset stop band of the filter,
filter's transition bandwidth $< 2\omega_m$.
Demodulation- synchronous detection.
Vestigial sideband modulation VSB

Transmitted: modified version of one sideband and to compensate this, an appropriately chosen vestige of the other sideband.

Well suited for large bandwidth signals: commercial television

- The bandpass filter makes difference between SSB and VSB.

- Odd symmetry in the transition bandwidth $[f_c - f_v, f_c + f_v]$ centered on the cutoff frequency f_c

$$H(\omega - \omega_c) + H(\omega + \omega_c) = 1$$
• The sum of its magnitude at frequencies symmetrically with \(f_c \) is 1, in the transition bandwidth

\[
H(\omega - \omega_c) + H(\omega + \omega_c) = 1
\]

• Phase is linear

• The transmission bandwidth is

\[
B_T = B + 2\pi f_v
\]

\(B \)-message bandwidth; \(f_v = \frac{\omega_c}{2\pi} \)-vestigial bandwidth

\[
s(t) = \frac{1}{2} A_c x(t) \cos \omega_c t \pm \frac{1}{2} A_c x'(t) \sin \omega_c t
\]

• “+” is for transmitting a vestige from the upper sideband

• “-” is for the lower sideband vestige

\(x'(t) \) – in quadrature component of the signal \(s(t) \) obtained by filtering \(x(t) \) with \(H_Q(\omega) \)

\[
H_Q(\omega) = j[H(\omega - \omega_c) + H(\omega + \omega_c)]; \quad -B \leq \omega \leq B
\]
• SSB modulation can be seen as VSB with vestige reduced to zero
• The filter for the in quadrature component:
 \[H_Q(\omega) = -j \text{sgn } \omega \]
• Or
 \[x'(t) = \mathcal{H}\{x(t)\} \]
• The video signal bandwidth is large with significant low frequencies spectral components. Hence the VSB
• Demodulation circuits must be simple (affordable). This requirement imposes envelope detection hence transmitting the carrier besides the VSB signal
• In reality, since at transmitter the power is high, the VSB filter is used at receiver (low power, relatively affordable filter)
• North America: channel bandwidth 6 MHz
• Picture carrier: 55.25 MHz
• Sound carrier: 59.75 MHz
• Image signal spectrum is 1.25 MHz below carrier, and 4.5 MHz above it

Adding the carrier:

\[s(t) = A_i \left[1 + \frac{1}{2} mx(t) \right] \cos \omega_c t \pm \frac{1}{2} mA_s x'(t) \sin \omega_c t \]

- \(m\)-modulation degree.
- At envelope detection:

\[a(t) = A_i \left[1 + \frac{1}{2} mx(t) \right] \sqrt{1 + \left[\frac{1}{2} \frac{mx'(t)}{1 + \frac{1}{2} x(t)} \right]^2} \]
• The signal is distorted at the receiver. This can be reduced by
 - reducing the modulation degree
 - increasing vestigial bandwidth to reduce \(x'(t) \)

The vestigial bandwidth 0.75MHz (1/6 of the bandwidth) is chosen such that distortion is acceptable even for \(m=100\% \)

Frequency translation

- Change the carrier frequency of the modulated signal from \(\omega_1 \) to \(\omega_2 \)
- Mixer: product modulator+bandpass filter

Up conversion \(\omega_2 > \omega_1 \)
\[\omega_2 = \omega_1 - \omega_0 \]

Down conversion \(\omega_2 < \omega_1 \)
\[\omega_2 = \omega_1 - \omega_0 \]
Up conversion, $\omega_2 > \omega_1$

Image signal spectrum
Spectrum of the modulated signal with up conversion

Down conversion, $\omega_2 < \omega_1$

Spectrum of the modulated signal with down conversion
Image signal spectrum
Frequency Division Multiplexing

- Telephony systems: 300Hz-3400Hz
- Goal: transmit simultaneously several vocal signals on the same channel:
 - FDM-frequency division multiplexing
 - TDM-time division multiplexing
- FDM, using AM-SSB
- Distance between carriers 4kHz
- BPFs – bandwidth limitation at 4kHz

LPF - remove high frequency components
AM Modulators modulate the signals on different carrier frequencies
Angular Modulation

- modulate a carrier: alter its angle—phase, according to the message; amplitude ~ constant

- **Advantage**: signal more robust against noise and interference.

- **Disadvantage**: increase in bandwidth
Angular Modulation

Modulated signal - rotating vector with amplitude A_c and angle $\theta_i(t)$:

$$s(t) = A_c \cos \theta_i(t)$$

Its angular velocity: **instantaneous frequency of the modulated signal.**

$$\omega_i(t) = \frac{d\theta_i(t)}{dt}$$

Phase modulation (PM)

$$\theta_i(t) = \omega_i t + k_p x(t)$$

k_p [rad/V] - phase sensitivity.

Frequency modulation (FM)

$$\omega_i(t) = \omega_c + 2\pi k_f x(t)$$

k_f [Hz/V] - frequency sensitivity.

$$\theta_i(t) = \omega_i t + 2\pi k_f \int_0^t x(\tau) d\tau$$

$$\Rightarrow s(t) = A_c \cos \left[\omega_i t + 2\pi k_f \int_0^t x(\tau) d\tau \right]$$

FM signal generated using $x(t)$ = PM signal generated using $\int_0^t x(\tau) d\tau$.

FM signal generated using $x(t)$ = PM signal generated using $\int_0^t x(\tau) d\tau$.

54
Frequency Modulation

modulating signal: \(x(t) = A_m \cos \omega_m t \)

instantaneous frequency \(\omega_i (t) = \omega_c + 2\pi k / A_m \cos \omega_m t \)

The frequency deviation \(\Delta \omega = 2\pi k / A_m \)

is the maximum instantaneous difference between FM modulated carrier frequency and nominal carrier frequency;

The modulation index \(\beta = \frac{\Delta \omega}{\omega_m} = \frac{2\pi k / A_m}{\omega_m} \)

\[s(t) = A_c \cos \theta(t) = A_c \cos [\omega_0 t + \beta \sin \omega_m t] \]

Essential characteristic for FM: frequency deviation \(\Delta f \) is proportional with modulating signal amplitude \(A_m \); does not depend on its frequency.

\(\beta << 1 \) radian - **narrow band modulation.**

\(\beta >> 1 \) radian - **wide band modulation.**

Narrow Band Frequency Modulation

\[s(t) = A_c \cos \omega_c t \cos (\beta \sin \omega_m t) - A_c \sin \omega_c t \sin (\beta \sin \omega_m t) \]

If \(\beta < \frac{\pi}{36} \) rad \(\Rightarrow \cos (\beta \sin \omega_m t) \approx 1 \) and \(\sin (\beta \sin \omega_m t) \approx \beta \sin \omega_m t \)

\(\Rightarrow s(t) = A_c \cos \omega_c t - \beta A_c \sin \omega_c t \sin \omega_m t \).
Phasorial representation of the FM and AM signals

Narrow band FM and AM – same bandwidth

Narrow Band FM Spectrum – general case

\[S(\omega) = \pi A_c \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right] + \pi A_t \left[\frac{X(\omega - \omega_c)}{\omega - \omega_c} - \frac{X(\omega + \omega_c)}{\omega + \omega_c} \right] \]

\[s(t) = A_c \cos(\omega_c t) \int_0^{y(t)} x(\tau) d\tau \]

\[= A_c \cos(\omega_c t) \cos(2\pi k_f y(t)) - A_c \sin(\omega_c t) \sin(2\pi k_f y(t)) \]

Narrow band modulation, \(2\pi k_f A \leq \frac{\pi}{36} \Rightarrow \)

\[s(t) \cong A_c \cos(\omega_c t) - A_c 2\pi k_f y(t) \sin(\omega_c t) \]

Ex: \(\pi/10 = 0.314\), \(\sin(\pi/10) = 0.309\)
Wide Band Frequency Modulation

\[s(t) = A_c \cos \left(\omega_c t + \beta \sin \omega_m t \right) \]

\[= A_c \cos \omega_c t \cos \left(\beta \sin \omega_m t \right) - A_c \sin \omega_c t \sin \left(\beta \sin \omega_m t \right) \]

\[\Rightarrow s(t) = \text{Re} \left\{ A_c e^{i(\omega_c t + \beta \sin \omega_m t)} \right\} = \text{Re} \left\{ \tilde{s}(t) e^{j\omega_c t} \right\}, \]

\[\tilde{s}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) e^{jn\omega_m t} \] - complex envelope of the FM signal \(s(t) \)

\(J_n(x) \) - Bessel function of first kind, order \(n \) and variable \(x \).

\[s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos(\omega_c t + n\omega_m t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos 2\pi (f_c + n f_m) t \]

\[S(\omega) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta) \left[\delta(\omega - \omega_c - n\omega_m) + \delta(\omega + \omega_c + n\omega_m) \right]. \]
properties of Bessel's functions
1. $J_n(\beta) = (-1)^n J_{-n}(\beta)$ for any $n \in \mathbb{Z}$,
2. For small β, we have:

 \[
 J_0(\beta) \equiv 1 ; \quad J_1(\beta) \equiv \frac{\beta}{2} ; \quad J_2(\beta) \equiv 0 ; \quad n > 2 ; \quad |\beta| \ll 1 ;
 \]
3. $\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$.

First five Bessel functions, $J_0(\beta)$-$J_4(\beta)$

\[
S(\omega) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta) \left[\delta (\omega - \omega_c - n\omega_m) + \delta (\omega + \omega_c + n\omega_m) \right].
\]
Remarks
1. FM Spectrum: component on the carrier, ω_c and an infinite set of components on the sidebands at a distance of ω_m, $2\omega_m$, ..., $\pm \omega_c$
2. $|\beta| \ll 1$ (narrow bandwidth FM), only $J_0(\beta)$ and $J_1(\beta)$ have significative values \Rightarrow carrier (ω_c) and two lateral bands $\omega_c \pm \omega_m$.
3. The amplitude of the component on ω_c depends on the factor $J_0(\beta)$ \Rightarrow not constant.

The power is constant:

\[
P = \frac{1}{2} A_c^2 \sum_{n=-\infty}^{\infty} J_n^2(\beta) = \frac{1}{2} A_c^2
\]

62
Example 1

The amplitude of the modulating signal affects the FM spectrum.

\[\beta = \frac{\Delta \omega}{\omega_m} = \frac{2\pi k_f A_m}{\omega_m} \]

- \(f_m = \) const;
- \(A_m \) variable \(\Rightarrow \Delta f = k_f \cdot A_m \) variable
- \(\Rightarrow \beta \) variable
- Spectral components separated by \(f_m \) (const).

Example 2

The frequency of the modulating signal affects the FM spectrum.

\[\beta = \frac{\Delta \omega}{\omega_m} = \frac{2\pi k_f A_m}{\omega_m} \]

- \(A_m = \) const \(\Rightarrow \Delta f = k_f \cdot A_m \) const
- \(f_m \) variable \(\Rightarrow \beta = \) variable
- + number of spectral components in the interval \([f_c - \Delta f, f_c + \Delta f]\)
- increases
- FM bandwidth \(\overrightarrow{\beta \rightarrow \infty} 2\Delta f \)
The transmission bandwidth of FM signals

\[S(\omega) = \frac{A}{2} \sum_{n=-\infty}^{\infty} J_n(\beta) \left[\delta(\omega - \omega_c - n\omega_m) + \delta(\omega + \omega_c + n\omega_m) \right] . \]

For \(\beta \to \infty \), the transmission bandwidth \(B_r \to 2\Delta f_c \); centered on \(f_c \).

Carson's rule: nearly all (~98%) of the power of a FM signal lies within a bandwidth \(B_r \) of:

\[B_r \cong 2\Delta f + 2f_m = 2\Delta f \left(1 + \frac{1}{\beta} \right) \]

Carson's rule: under – estimation of transmission band.

The **universal curve**: over – estimation of transmission band.

The transmission bandwidth is found between the two estimates

Equivalent definition of the transmission bandwidth

The frequency interval where the spectral components of the FM signal have a value superior to 1% of the carrier amplitude.

\[B_r = 2n_{\text{max}}f_m \]

where for each \(n \leq n_{\text{max}} \) is satisfied the condition

\[|J_n(\beta)| > 0.01. \]

The value \(n_{\text{max}} \) depends on \(\beta \).

\[\begin{array}{c|c|c|c|c|}
\beta & 2n_{\text{max}} & \beta & 2n_{\text{max}} \\
0.1 & 2 & 0.5 & 16 \\
0.3 & 4 & 0.5 & 28 \\
0.5 & 4 & 1.0 & 50 \\
1 & 6 & 2.0 & 70 \\
2 & 8 & \end{array} \]
Non harmonic modulating wave

\(x(t) \) - modulating signal, maximum frequency \(W \) (same as \(f_m \))

\[A_{\text{max}} = \max |x(t)| \Rightarrow \Delta f = k_f A_{\text{max}}, \text{ frequency deviation} \]

\[\Rightarrow D = \Delta f / W \] \(\text{deviation ratio} \) (same as \(\beta \)).

Carson's rule: replace \(\beta \) with \(D \) and \(f_m \) with \(W \) and the universal curve for any modulating signal

Example 3

North America, radio transmissions:

\[\Delta f = 75 \text{ kHz} ; \ W = 15 \text{ kHz} ; \ D = \frac{75}{15} = 5. \]

Carson's rule: \(B_f = 2(\Delta f + W) = 180 \text{ kHz} \).

Universal curve: \(D = 5 \Rightarrow B_f = 3,2\Delta f = 240 \text{ kHz} \).

In practice a transmission bandwidth of 200 kHz is used.
Frequency Modulated Signals’ Generation

There are 2 methods,

direct - based on a voltage controlled oscillator - 555 timer
indirect - 1. narrow band FM
 2. frequency multiplication to set the frequency deviation.

The second method ⇒ high frequency stability
⇒ FM radio broadcasting

FM Signal Generation, indirect method

The frequency deviation is small to reduce distortions in narrow band modulation

narrow band FM signal ⇒ wide band FM signal by frequency multiplication
Input: \(s(t) = A \cos \left(\omega t + 2\pi k t \int_0^t x(\tau) d\tau \right) \), with \(f(t) = f_e + k_j x(t) \)

Output: \(v(t) = a_1 s(t) + a_2 s^2(t) + \ldots + a_n s^n(t) \)

The pass-band of the band-pass filter is \(n \) times larger than of the bandwidth of the signal \(s(t) \).

\[s'(t) = A \cos \left(n\omega t + 2\pink t \int_0^t x(\tau) d\tau \right) \]

The instantaneous frequency: \(f'(t) = nf_e + nk_j x(t) \).

- The **frequency multiplier** is a nonlinear device followed by a bandpass filter
- The nonlinear device is **memoryless** in the sense that it doesn’t have in its structure reactive elements
Demodulation

- Reconstruction of modulating wave
- Inverse characteristic of transfer of the characteristic of transfer of the FM modulator
- 1. directly: frequency discriminator: output proportional with the instantaneous frequency of the FM signal.
- 2. indirectly: PLL circuit (Phase-locked loop)

FM quadrature demodulator

The block diagram of the demodulator
• The quadrature demodulator converts the FM signal:

\[
s(t) = A \cos \left(2\pi f_c t + 2\pi \int_0^t x(\tau) d\tau \right)
\]

\[f_c = 10.7\text{MHz} = 10700\text{kHz}\]

into a PM signal, and a PM detector is used to recover the message signal, \(x(t)\)

• 1. The phase shifter converts FM modulation into PM modulation but preserves the FM modulation

• 2. The analog multiplier serves as a phase detector, PD, and produces an output being linearly proportional to PM. PD is not sensitive to FM

• 3. The low-pass filter suppresses the spectral components with high frequency \((2f_c)\)
The phase shift is linearly proportional to the instantaneous frequency deviation around the carrier frequency, 10700kHz.

\[\phi^\prime(f) = -90^\circ + \frac{34.42}{150} (f - 10700) \]

\[\phi(f) = -\frac{\pi}{2} + 4 \cdot 10^{-3} (f - 10700) \text{ [rad], } f \text{ [kHz]} \]

The phase shifted signal is:

\[\tilde{s}(t) = \tilde{A} \cos \left[2\pi 10700t + 2\pi k \int_0^t x(\tau) d\tau + 4 \cdot 10^{-3} (f - 10700) - \frac{\pi}{2} \right] \]

\[= \tilde{A} \sin \left[2\pi 10700t + 2\pi k \int_0^t x(\tau) d\tau + 4 \cdot 10^{-3} (f - 10700) \right] \]
But the amplitude response of the phase shifter is

\[\text{FM} \]

\[20 \log \frac{A_m}{A} = 20 \log \frac{\tilde{A}_M}{\tilde{A}_m} = 0.771 \text{ [dB]} \]

Maximum gain

The amplitude varies only a little, and therefore we can consider the output amplitude of the output from the phase shifter is constant:

\[\frac{\tilde{A}_M}{\tilde{A}_m} \simeq 1.093 \Rightarrow \tilde{A} \simeq \text{cst}. \]

The mean gain can be taken as:

\[20 \log \frac{\tilde{A}}{A} \simeq -26.57 \text{ [dB]} \Rightarrow \tilde{A} \simeq 4.7 \cdot 10^{-2} A \]
The phase detector is implemented by an analog multiplier:

\[s(t) = A(A_t \cos \left(2\pi 10700t + 2\pi \int_0^t x(\tau) d\tau \right) \sin \left(2\pi 10700t + 2\pi k \int_0^t x(\tau) d\tau + 4 \cdot 10^{-3} (f - 10700) \right) \]

\[= 2.35 \cdot 10^{-2} A^2 \sin \left(4 \cdot 10^{-3} (f - 10700) \right) \]

The low-pass filter suppresses the second component, centered at 21.4 MHz. The first component, a base-band component is retained:

\[\tilde{x}(t) = 2.35 \cdot 10^{-2} A^2 \sin \left(4 \cdot 10^{-3} (f - 10700) \right) \]

\[\left| 4 \cdot 10^{-3} (f - 10,700) \right| \leq 4 \cdot 10^{-3} \cdot 75 = 0.3 \text{ [rad]} \]

For \(|\alpha| \leq 0.3 \) \(\sin \alpha \cong \alpha \)

\[\tilde{x}(t) = 2.35 \cdot 10^{-2} A^2 4 \cdot 10^{-3} (f - 10700) \]

\[= 94.12 \cdot 10^{-6} A^2 (f - 10700) \]
• The instantaneous frequency is
 \[f = 10700 + kx(t) \text{ [kHz]} \]
• And therefore
 \[\hat{x}(t) \approx 94.2 \times 10^{-6} A^2 kx(t) \]
• We have obtained a FM demodulator. The circuit configuration presented is almost exclusively used to implement a modern FM demodulator (discriminator).

• The transfer function obtained is called an S curve

\[v_{out} \]
\[f_i \]

Linear portion of the characteristic

10.7 [MHz]

83 84
Stereo FM Signals Multiplexing

Stereo - 2 different signals are transmitted using the same carrier. The stereo radio broadcasting satisfies the conditions:
1. It is realized inside the broadcasting FM channel allocated,
2. It is compatible with the mono receivers.

The signal \(x_r(t) + x_l(t)\) represents the part of the base-band disponible for mono reception.
The signal \(x_r(t) - x_l(t)\) is amplitude modulated with 2 sidebands and suppressed carrier. The multiplexed signal:
\[x(t) = \left[x_r(t) + x_l(t)\right] + \left[x_r(t) - x_l(t)\right] \cos 4\pi f_p t + K \cos 2\pi f_p t,\]
is frequency modulated.
Non-linear Effects in Frequency Modulation

- Nonlinearities in electronic circuits
 - Strong non-linearity which is intentional, for given applications
- Weak non-linearity
- Effect of weak non-linearity on FM systems
Non-linear Effects in Frequency Modulation

Consider a non-linear communication channel with the input-output transfer characteristic:

\[v_0(t) = a_1v_1(t) + a_2v_2(t) + a_3v_3(t) , \]

having at its input the frequency modulated signal:

\[v_i(t) = A_c \cos \left(2\pi f_c t + \phi(t) \right) ; \quad \phi(t) = 2\pi k_j \int_0^t x(\tau) d\tau \]

\[\Rightarrow v_0(t) = a_1A_c \cos \left(2\pi f_c t + \phi(t) \right) + a_2A_c^2 \cos^2 \left(2\pi f_c t + \phi(t) \right) + \]

\[+ a_3A_c^3 \cos^3 \left(2\pi f_c t + \phi(t) \right) . \]

From the trigonometric relations:

\[\cos^2 x = \frac{1 + \cos 2x}{2} ; \quad \cos^3 x = \frac{3x + 3\cos x}{4} \]

we have:

\[v_0(t) = \frac{a_2A_c^2}{2} + \left(a_1A_c + \frac{3}{4}a_3A_c^3 \right) \cos \left[2\pi f_c t + \phi(t) \right] + \]

\[+ \frac{a_3A_c^4}{4} \cos \left[6\pi f_c t + 3\phi(t) \right] . \]

For the detection of the FM signal from \(v_0(t) \) it is necessary its identification.
Let Δf be the frequency deviation of the FM signal and W the maximum frequency of the modulator signal. Applying Carson's rule we have the separation condition:

$$2f_c - (2\Delta f + W) > f_c + (\Delta f + W) \Rightarrow f_c > 3\Delta f + 2W.$$

If this condition is satisfied then we can extract from $v_0(t)$, using a band-pass filter with central frequency f_c and bandwidth $2\Delta f + 2W$, the term

$$v_0'(t) = \left(a_4A_c + \frac{3}{4}a_3A_c^3\right)\cos\left[2\pi f_c t + \phi(t)\right].$$

The Super-heterodyne Receiver

A radio broadcasting receiver has not only the goal to demodulate the received signal. Other goals:

- Selection of the desired carrier frequency,
- Filtering, for the separation of the desired signal from other modulated signals,
- Amplification, for the compensation of the losses produced by the propagation.
\(f_{RF} = 630 \text{ kHz} \)

Radio Timisoara

A IF signal is generated in the receiver if the difference of the local oscillator frequency and of the input carrier frequency equals \(\pm f_{IF} \):

\[
f_{RF} = f_{LO} \pm f_{IF}.
\]

only one of these frequencies corresponds to the carrier, the other one is named **image frequency** \(f_{RF} + 2f_{IF} \).
• For FM case, after the IF amplifier there is limiter and a bandpass filter
• Detection is made using a frequency discriminator