
 1

Multi-scale MAP Denoising of SAR Images 
 

Dorina. Isar and Alexandru. Isar 
Electronics and Telecommunications Faculty, 

“Politehnica” University 
Timisoara, Romania 

alexandru.isar@etc.utt.ro 
 

 
 

André QUINQUIS 
E3I2-EA3876, 

ENSIETA, Brest 
France 

Andre.Quinquis@ensieta.fr 
 

 

Abstract - The SAR images are perturbed by a multiplicative 
noise called speckle, due to the coherent nature of the 
scattering phenomenon. The use of speckle reduction filters 
is necessary to optimize the images exploitation procedures. 
This paper presents a new speckle reduction method in the 
wavelets domain using a novel Bayesian-based algorithm, 
which tends to reduce the speckle, preserving the structural 
features (like the discontinuities) and textural information 
of the scene and a new discrete wavelet transform called 
Diversity Enhanced Discrete Wavelet Transform, DEDWT. 
The entire class of diversity improved wavelet transforms is 
characterized and is proved that the averager optimizes the 
synthesis step for the minimization of the mean square 
approximation error. A blind speckle-suppression method 
that performs a non-linear operation on the data, based on a 
new bishrink filter variant is obtained. Finally, some 
simulation examples prove the performance of the proposed 
denoising method. This performance is compared with the 
results obtained applying state-of-the-art speckle reduction 
techniques.  
 

I. INTRODUCTION 
Some classical estimators, used to denoise SAR images 
are, [1-2]: 
- the Kuan filter (least mean square error linear 
estimator), 
-  the Frost filter (Wiener filter adapted to multiplicative 
noise).  
Between the modern estimators can be found: 
- the marginal Maximum a Posteriori,MAP, filter (for the 
maximization of the a posteriori probability), [3], 
- the multiresolution MAP filter (a combination between 
a marginal MAP filter and a multiscale transform), [4]. 
A new estimators category uses the wavelets theory, [3-
6]. The corresponding denoising methods have three 
steps: 
1) the computation of the forward wavelet transform, WT, 
2) the filtering of the result obtained, 
3) the computation of the inverse wavelet transform of 
the result obtained, IWT. 
Some comparisons between the application of the 
classical speckle reduction filters and the application of 
the denoising methods based on wavelets, in the case of 
SAR images, were proved the superiority of this last 
category of methods, [6-7]. Numerous WTs can be used 
to operate these treatments. The first wavelet transform 
used in denoising applications was the Discrete Wavelet 
Transform, DWT. This transform is most commonly used 
in its maximally decimated form (Mallat's dyadic filter 
tree), [8-9]. The DWT has two parameters: the mother 
wavelets, MW and the primary resolution, PR, (number 

of iterations). The importance of their selection is 
highlighted in [1].  The discrete wavelet transform, DWT, 
realizes a concentration of the energy of the input signal 
in a small number of coefficients. This concentration 
enhancement is useful for the reduction of the number of 
operations in the application considered. For a given 
signal, using different MWs, different energy 
concentrations are obtained. So, for a given input image 
there is a best MW, that realizes the higher energy 
concentration. Unfortunatelly this MW do not be priori 
known, esspecialy when the useful image is covered by 
noise. A relative new DWT, less sensitive to the selection 
of the MW is the DEDWT, [1]. Numerous filter types can 
be used in the WT domain: the Wiener filter, [1], that 
minimizes the mean square estimation error, the hard-
thresholding filter, [10], that realizes a very simple 
treatment, the soft-thresholding filter, [4, 7, 10], that 
minimizes the Min-Max estimation error, the marginal 
MAP filter, [3], or the bishrink filter, [13]. Some variants 
of those filters were used in [4,5,7]. In [3] and [6] two 
special types of MAP filters were used. Unfortunately, 
these filters have not closed-form input-output relations. 
Their application requires the use of numerical methods. 
This paper proposes a new denoising method for SAR 
images based on the combination of the DEDWT with a 
variant of bishrink filter. This variant has a closed-form 
input-output relation. The second section presents the 
architecture of the proposed denosing system and the 
third section establishes a statistical analysis of the 
proposed denoising method. The aim of the forth section 
is the presentation of some simulation results.  
 

II. THE DENOISING METHOD 
The SAR images are perturbed by a multiplicative noise 
of speckle type, 

1 2 1 2 1 2(τ ,τ ) (τ ,τ ) (τ ,τ ).    r o ri i n= ⋅  (2.1) 
The hypothesis of the independence of the random 
processes 0i and rn , can be adopted, when the speckle is 
fully developed, [3,6]. The architecture of the denoising 
system proposed is presented in fig. 1. The WT is applied 
after the transformation of the multiplicative noise into an 
additive one. The coefficients of this transform are 
filtered using the variants of the bishrink filter, proposed 
in this paper. At the system output, after the computation 
of the IWT, the logarithm inversion and the mean 
compensation, the estimation of the useful image, 

( )0 1 2ˆ τ ,τi , is measured. 
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Fig. 1. The architecture of the denoising system. 
 

III. A STATISTICAL ANALYSIS OF  
THE DENOISING SYSTEM 

This analysis will be done block after block, following 
Fig. 1. 
 
A. The input image 
The speckle perturbing a SAR image is a white noise 
with the energy distributed following a law Gamma: 

( ) ( )
1

Γ for 0,
Γ

L
L LaLf a a e a

L
− −= ⋅ ⋅ ≥  

 
(3.1) 

where L represents the number of looks. The useful part 
of the input image has a similar distribution, [1]. The 
mean of the speckle noise equals 1 and its variance is 
equal with 1/L.  
 
B. The image at the output of the logarithm computation 
system 
 
The first block, in fig. 1, transforms the initial probability 
density function, pdf, into a pdf of log Γ−  type: 

( ) ( )log ,    
aL

La LeLf a e e
L

−
−Γ = ⋅

Γ
 

 
(3.2) 

with the mean and the variance given by the following 
relations, [1] : 

1
log

1

1µ γ ln ,    
L

k
L

k

−
−Γ

=
= − −∑  

(3.3) 

where γ  is the Euler's number and: 

log

2 1
2

2
1

π 1σ .    
6

L

k k−Γ

−

=
= − ∑  

 
(3.4) 

Because the mean in (3.3) is not unitary, the logarithm 
computation procedure requires a mean correction, [6]. 
This correction can be realized at the end of the proposed 
denoising method. The mean of ri  is equal with the mean 
of oi . The mean of ri  is estimated before the 
computation of the logarithm. This value is used after the 
inversion of the logarithm. The mean of the result 
obtained is substracted from this result and the mean of 

ri  is added. So, the mean of the obtained estimation, ôi , 
will be equal with the mean of oi . Taking into account 
the strong connection between the DEDWT and the 
DWT, in the following, a statistical analysis of the 
DEDWT trough a correspondent analysis of the DWT is 

presented. 
 

B. THE DEDWT principle 
The DEDWT construction is based on the diversity 
enhancement principle. Other WTs are also based on this 
principle. Two examples of such transforms are: the 
translation invariant discrete wavelet transform, TI DWT, 
[10] and the direction invariant discrete wavelet 
transform, DI DWT, [11]. The diversity enhancement is 
realized computing some slightly different DWTs. Each 
one is after filtered and the corresponding IDWT is 
applied, obtaining a different estimation of the useful 
component of the input image. Finally all these partial 
results are synthesized and the final result is obtained. 
Generaly the synthesis is realized by averaging. In 
section E of this paragraph, the reason to use a runing 
averager for the synthesis of the partial reslults will be 
explained. The parameters of the DWT are: the MW, ψ(t), 
and the number of iterations, M. So the diversity can be 
enhanced computing for the same image, [ ],xi k l , some 
different discrete wavelet transforms. For each of them a 
different MW is used in the case of the DEDWT. In the 
case of the other two WTs, already mentioned (TI DWT 
and DI DWT) many input images (obtained by the 
circular translation or rotation of the original input image) 
are used to obtain the enhancement of the diversity.  The 
DEDWT is a redundant discrete wavelet transform 
realizing the correspondence between the vector 

[ ],Tx i k l  and a three-dimensional matrix y=DEDWT[(k, 
l), m]. Every column of this matrix represents one of the 
DWT of the image [ ],Tx i k l . Filtering each column with 
the aid of the bishrink filter variant proposed in this 
paper, a new three-dimensional matrix, y  is obtained. 
Now, the DEDWT can be inverted. Its inverse is called 
IDEDWT. For every column of the matrix y  the 
corresponding IDWT is computed. A new three-
dimensional matrix, E[(k,l),m], is obtained. Every column 
of this matrix contains an estimation of the image 

[ ],xi k l . Computing the mean of the columns of the 
matrix E[(k,l),m] the vector ix , is obtained.  
 

C. The DWT statistical analysis 
This paragraph reproduces the principal results of the 
DWT statistical analysis obtained in [12]. In any iteration 
of the DWT, the lines of the input image (obtained at the 
end of the previous iteration) are low-pass filtered with a 
filter having the impulse response 0m  and high-pass 
filtered with the filter with the impulse response 1m . 
Then the lines of the two images obtained at the output of 
the two filters are decimated with a factor of 2. Next the 
columns of the two images obtained are low-pass filtered 
with 0m and high-pass filtered with 1m . The columns of 
those four images are also decimated with a factor of 2. 
Four new images (representing the result of the current 
iteration) are obtained. The first one, obtained after two 
low-pass filtering is named approximation image (or LL 
image). The others three are named detail images: LH, 
HL and HH. The LL image represents the input for the 
next iteration. In the following the coefficients of the 
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DWT will be noted with k
x mD , where x represents the 

image who's DWT is computed, m represents the 
iteration index and k=1, for the HH image, k=2, for the 
HL image, k=3, for the LH image and k=4, for the LL 
image. These coefficients are computed using the 
following relation: 

[ ] ( ) ( )1 2 , , 1 2, τ ,τ ,ψ τ ,τ ,k k
x m m n pD n p x=  (3.5) 

where the wavelets can be factorized: 
( ) ( ) ( ), , 1 2 , , 1 , , 2ψ τ ,τ α τ β τ ,k k k

m n p m n p m n p= ⋅  (3.6) 

and the two factors can be computed using the scale 
function ( )φ τ   and the mother wavelets ( )ψ τ with the 
aid of the following relations: 

( ) ( )
( )

( ) ( )
( )

,
, ,

,

,
, ,

,

φ , 1, 4
α τ

ψ , 2,3

φ τ , 2, 4
β τ

ψ τ , 1,3

m nk
m n p

m n

m nk
m n p

m n

k
k

k
k

τ
τ

 ==  =
 ==  =

 

 
 
 
(3.7) 

where: 

( ) ( )
( ) ( )

2
,

2
,

φ τ 2 φ 2 τ ;

ψ τ 2 ψ 2 τ .

m
m

m n

m
m

m n

n

n

− −

− −

= −

= −

 

 
 
(3.8) 

 
1) The pdf of the wavelet coefficients 

The pdf of the wavelet coefficients, k
x mD , can be 

expressed with the aid of the pdf of the input image, x, 
using the relation, [3]: 

( )
( ) ( )

( )

0 0

1 1 2 2

0 0

1 1 1 1

1 1
1 1

...

, , ,..., , , ,

k
x m

m m

M k N k M M

D q r q r
M M

d m m
q r

f a

f k q r q r a

= = = =

= =

= ∗ ∗ ∗ ∗

∗ ∗

 

 
(3.9) 

where: 
( )

( )
( )( )

1 1

1 1

1 1

, , ,..., , ,

, , ,..., ,

, , ,..., , ,

d m m

m m

x m m

f k q r q r a

G k q r q r

f G k q r q r a

=

⋅

 

 
(3.10) 

and : 
( )

( ) [ ] [ ]

1 1

1 1 0 0
2

, , ,..., ,
1 ,

, ,

m m

m

l l
l

G k q r q r

F k q r m q m r
=

=

=

∏
 

 
 
(3.11) 

where : 

( )

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

0 1 0 1

0 1 1 1
1 1

1 1 0 1

1 1 1 1

for 4
for 3

, , ,
for 2
for 1

m q m r k
m q m r k

F k q r
m q m r k
m q m r k

 =
 ==  =
 =

 

 
 
(3.12) 

0M represents the length of the impulse response 0m , 
1M  the length of 1m and the numbers of the first two 

groups of convolutions in relation (3.9) are given by the 
relation (3.13).  
In conformity with (3.9), the pdf of the wavelet 
coefficients is a sequence of convolutions. Hence, the 

random variable representing the wavelet coefficients can 
be written like a sum of independent random variables. 
So, the central limit theorem can be applied. This is the 
reason why the pdf of the wavelet coefficients tends 
asymptotically to a Gaussian, when the number of all 
convolutions in (3.9) tends to infinity. This number 
depends on the mother wavelets used and on the number 
of iterations of the DWT. 

( )

( )

0

0

1

1

0

1

0

1

for 4
for 3
for 2
for 1

and
for 4
for 3
for 2
for 1

M k
M k

M k
M k
M k

M k
M k

N k
M k
M k

=
 ==  =
 =

=
 ==  =
 =

 

 
 
 
 
 
 
(3.13) 

For mother wavelets with a long support, this number 
becomes high very fast (for a small number of iterations).  
For the first two iterations, heavy-tailed models must be 
considered. Finer analysis, measuring the distance 
between the real pdfs and Gaussians, are performed in 
[3], and [6].  

 
2) The correlation of the wavelet coefficients 

The input image, x, represents the sum of the logarithm of 
the useful image, s, and of the logarithm of the speckle 
image, n. Because these two random signals are not 
correlated, the correlation of the wavelet coefficients of 
the image x, can be written in the following form: 

Γ Γ Γ .k k k
x m s m n mD D D= +  (3.14) 

Taking into account the fact that the input noise is white, 
with a variance 2

log Γ−σ ,the expression of the wavelet 
coefficients of the input noise image correlation function 
is, [13]: 

[ ] [ ] [ ]
2 1

1 1 1 12
1

π 1Γ , ( ) δ δ .
6n

L
k

Dm
l

n p n p
l

−

=
= − ⋅ ⋅∑  

 
(3.15) 

So, the wavelet coefficients sequences of the noise 
component of the input image are white noise images 
having the same variance. The first and second order 
moments of the wavelet coefficients of the input noise 
image can be computed using the following relations, 
[12]: 

[ ]{ } 1
1 1

1

0, 1, 2, 3

, .1
2 γ ln , 4

k L
n m m

l

k

E D n p
L k

L

−

=

=

=
− − =




 
   
∑

 

 
(3.16) 

and: 
2 1

2
12

22 1 -1
2

2
1 1

π 1
, 1, 2, 3

6
σ

π 1 1
2 γ ln 4.

6

k
n m

L

l

D L L
m

l l

k
l

L k
ll

−

=

−

= =

− =

=

− − − − =





  

 
  

∑

∑ ∑

 

 
 
(3.17) 

The correlation of the DWT of s is given by: 
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[ ] 2
1 1 1 1Γ , 2 Γ 2 , 2 ,k

s m

m m m
sD n p n p = ⋅     

(3.18) 
its mean by: 

[ ]{ }1 1
0, 1, 2,3

,
2 µ , 4,

k
s m mD

s

k
E n p

k

== 
⋅ =

 
 
(3.19) 

and its variance, by: 
2 2 2σ 2 σ .k
s m

m
sD

= ⋅   
(3.20) 

So, the variance of the detail wavelet coefficients 
sequences, obtained starting from the useful component 
of the input image, increases when the iteration index 
increases. 
 

D.  The bishrink filter 
Let 1 y be the considered detail coefficient and 2 y  its 
parent (the detail coefficient at the same position but at 
the following iteration). In fact for a given parent 
corresponds a zone composed by four child coefficients. 
This is the reason why every image containing parent 
coefficients will be over sampled to have the same 
number of pixels like the corresponding image formed 
with child coefficients. The statistical parameters of the 
child coefficients (mean, variance), will be estimated 
using the parent coefficients having the same position and 
the neighbor child coefficients, located in a rectangular 
window, centered on the current child coefficient. It can 
be written: 

1 1 1 ,y s n= +  (3.21) 

and: 
2 2 2 ,y s n= +  (3.22) 

or, with vectorial notations: 
.y s n= +  (3.23) 

The MAP estimation of s, realized using the observation 
y, is given by, [13]: 

( ) ( ) ( )( ){ }ˆ arg max ln p p .n s
s

s y y s s= − ⋅  (3.24) 

Tacking into account the considerations already made, in 
the following we will consider that the DEDWT of the 
noise component is distributed following a Gaussian with 
a null mean, [3,5,6], the model of the first two iterations 
of the DEDWT of the useful image will be a Laplace 
distribution, [13], and for the other iterations this model 
will be Gaussian. The noise variance estimation can be 
done using the relation, [14]: 

[ ]( ) ( )2 1 1
1 1

,
σ    , .

0.6475
n

median y n p
n p HH= ∈  

 
(3.25) 

The useful component DEDWT variance must be 
estimated locally. In this estimation process the 
correlation between the values of the same wavelet 
coefficient computed at two successive scales can be 
exploited. For this purpose the following relations can be 
used. First the local mean of the DEDWT of the useful 
component must be estimated: 

[ ]
( )

[ ]
( )2 2 ,1 1

1 1 2 2( ) 2
,

1, ,   
2 1

where  1  or 2.

b
b

n p

b
s

n p W
n p y n p

P

b
∈

= ⋅
+

=

∑µ

 

 
(3.26) 

Then, the variance of the DEDWT of the input image, 
contained in the moving window 

1 1,
b

n pW , can be 
computed: 

[ ]
( )

[ ](
( )

( ) [ ]

2 2 ,1 1

2
1 1 2 22

,

2

2 2

1σ , ,
2 1

                                                  µ ,

b
n p

b

b b
y

n p W

s

n p y n p
P

n p

∈
= −

+


− 



∑

 

 
 
 
(3.27) 

Using these values, the useful component DEDWT 
variance is given by: 

[ ] [ ]2 2 2
1 1 1 1σ , max 0, σ , σ

b b
x nn p n p = − 

 
 

 
(3.28) 

But, applying the relation (3.20), a theoretical result of 
this paper, a different estimation of the local variance of 
the child coefficients can be obtained: 

2
1 σσ

2
d =  

 
(3.29) 

To profit of these two estimations of the useful 
component DEDWT local variances, obtained at two 
successive scales, it can be written: 

2
1

1
σσ

2σ
2

+
=  

 
(3.30) 

and the input-output relations of the two variants of the 
bishrink filter that will be used in the following becomes:  

( ) ( )

( ) ( )

2
2 21 2

1
1 1

2 21 2

3σ

σ ,

nx x

s x
x x

+

 
 + −
 
 = ⋅

+
 

 
 
 
(3.31) 

for the first two iterations of the DEDWT and: 
1 2

1 1
1 2 2

σ σ

σ σ σn

s x⋅= ⋅
⋅ +

 

 
(3.32) 

for the following iterations. 
 

E. Synthesis by averaging 
In figure 2 is presented a denoising system based on a 
diversity enhanced WT. This system corresponds to the 
sub-system in Figure 1 composed by the second, the third 
and the fourth blocks. It is composed by N different 
denoising systems, each one corresponding to a different 
DWT. The synthesis of the result can be done with the 
relation: 

 i
1

X β
N

l l
l

X
=

=∑  
 
(3.33) 
 
 

where the coefficients lβ are constrained to satisfy the 
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 perfect reconstruction condition: 

1
β 1

N
l

l=
=∑  

 
(3.34) 
 

These coefficients are selected to minimize the mean 
square error between X and iX . This error has the 
expression: 

( ) { }2 2 2
Xσ 2

i
ii X

MSE E X X E X X = − = − + 
 

σ  
 
(3.35) 

This minimization can be done using the Lagrange 
multipliers method. The associated functional has the 
expression: 

( ) { }2 2
1 2 X

1

β ,β ,...,β σ 2

λ β 1

i
iN X

N
l

l

F E X X

=

= − + −

 
−  

 
∑

σ

 

 
(3.36) 
 
 

The minimization condition is: 

0
βk

F∂ =
∂

 
 
(3.37) 

equivalent with: 

{ }
1

2 2 β λ=0.
N

k l l k
l

E XX E X X
=

   − + −      
∑  

 
(3.38) 
 

Using the notations: 
{ } { }  ,  ,   ,k k l k l kE XX i E X X c= =   

the last relation becomes: 

,
1

λβ    1,    .
2

N
l l k k

l
c i k N

=
⋅ = + =∑  

 
(3.39) 

The partial results, lX , are estimations of the same useful 
image, X, obtained using a denoising method based on 
the DWT and a variant of bishrink filter. Because the 
noise in the DWT domain is white and Gaussian, it can 
be supposed that the partial results are of the form: 

ε ,   1,l lX X l N= + =  (3.40) 

where lε  represent N realizations of a white Gaussian 
noise. This is the reason why it can be written: 

2 2
ε2

, 2
σ σ , for  

σ ,       ,
σ , in rest

X
k X l k

X

l k
i c

 + == = 


 
(3.41) 
 

and the relation (3.43) becomes the system of equations 
described in relation (3.42).  Using the constraint from 
(3.34) the last system of equations takes the simplified 
form in relation (3.43), with the solutions in relation 
(3.44).  Or taking into account once more the constraint 
(3.34) the solutions become those described in relation 
(3.45).  So, the best synthesis solution for the 
minimization of the approximation mean square error is 
the averager.  

 
. 
 
 
 
 
 

Fig. 2. An equivalent representation of the denoising 
system 

 

( )
( )

( )

2 2 2 2 2
1 ε 2

2 2 2 2 2
1 2 ε

2 2 2 2 2
1 2 ε

λβ σ σ β σ ... β σ σ
2
λβ σ β σ σ ... β σ σ
2

.

.

.
λβ σ β σ ... β σ σ σ
2

X X N X X

X X N X X

X X N X X

 + + + + = +

 + + + + = +






 + + + + = +


 

 
 
 
 
(3.42) 

  
2 2 2

ε
λσ +β σ σ ,    1,
2X k X k N= + =  

 
(3.43) 

1 2 2
ε

λβ β ... β    ,
2σ

N= = = =  
 
(3.44) 

1 2
1β β ... β    ,N N

= = = =  
 
(3.45) 

 
IV. SIMULATION RESULTS 

A comparison between the mean square errors obtained 
applying different speckle reduction methods is presented 
in the following table. The image Lena was perturbed 
with a multiplicative Rayleigh noise, obtaining the input 
image. This image was treated using: a running averager, 
a median filter, the Lee's filter, the Kuan's filter, the 
Gamma filter, the Frost's filter and the proposed 
denoising method. The first parameter of each filter 
represents its window size. The second one is specific for 
each filter. These quantities were selected to minimize the 
mean square error of the result for the considered image. 
All the parameters of the proposed denoising method are 
selected automatically. Finally, a real image, where the 
speckle is fully developed, was treated. Analyzing the 
result it can be observed that the noise was practically 
entirely removed and the fact that the details of the useful 
part of the input image (textures or edges) were not 
affected by the treatment proposed. An objective measure 
of the performance of a denoising method for the 
homogeneous regions of a SAR image is the 
enhancement of the equivalent number of looks, ENL. 
The ENL is defined with the following relation: 
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TABLE I 
A COMPARISON OF SEVEN SPECKLE REDUCTION 

METHODS 
Noisy Image 3635 
Averager 5 571.7 
Median 7 569.8 
Lee 7-5 807.5 

Kuan 9-5.5 732.8 
Gamma 5-1.5 595.5 

Frost 5-1 566 
Proposed 287.4 

 
2meanENL .

standard deviation
 =  
 

 
 
(4.1) 

Considering the same homogenous region in the original 
and result images, we have obtained for the input ENL a 
value of 15 and for the output ENL a value of 62. 

 
V. CONCLUSION 

A new denosing method for the processing of SAR 
images was proposed. It is based on the use of the 
DEDWT and of two original variants of bishrink filter. 
This method permits to retain coefficients produced by 
significant structures present in the useful part of the 
input image and suppress those produced by the speckle 
noise. A complete statistical analysis of this method was 
reported. Its hypotheses and results were confirmed by 
simulations. From log Γ−  assumptions for the pdf of the 
reflectivity and the speckle we have expressed the pdf of 
the wavelet coefficients. For the first two iterations of the 
DEDWT, those pdfs corresponds to heavy-tailed 
distributions. We have approximated those distributions 
with a Laplace pdf. For the following iterations these pdfs 
can be considered Gaussians. Using these hypotheses a 
MAP filter with closed-form input output relation, that 
takes into account the interscale dependency of the 
wavelet coefficients was derived. Its parameters are 
locally estimated. Because two different estimations of 
the local variance of the child wavelet details of the 
useful component of the input image are at our disposal, 
they are combined to increase the precision of this 
estimation. An important theoretical result reported in this 
paper is the proof of the averager optimality for the 
synthesis of the result that minimizes the mean square 
approximation error. An adaptive mean correction 
method was also proposed. We evaluated the results on 
both synthetic data and real SAR images, validating the 
theoretical hypotheses used. Further improvements could 
be obtained if a better WT and a 3D bishrink filter would 
be used. The latter avenue is currently under investigation 
and results will be reported soon. 
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