LE DÉBRUITAGE DES IMAGES SONAR EN UTILISANT LA TRANSFORMÉE EN ONDELETTES À DIVERSITÉ ENRICHIE

Alexandru ISAR*, Sorin MOGA**

** : GET ENST Bretagne / Département LUSSI – CNRS TAMCIC, France
* : Universitatea “Politehnica” din Timisoara, Roumanie

LUSSI-TR-2004-4-FR
July 2004
Table des matières

1 Introduction 1

2 L’analyse statistique du bruit de type *speckle* 4
 2.1 Un premier modèle du bruit de type *speckle* 5
 2.2 Le deuxième modèle du bruit de type *speckle* 8

3 L’analyse statistique du logarithme du bruit de type *speckle* 8
 3.1 La loi log-Gamma ... 9
 3.2 La transformation de la loi log-normale par logarithme 17

4 L’analyse statistique de la TODDE 18
 4.1 L’analyse statistique de la transformée en ondelettes discrète 19
 4.1.1 La fonction de corrélation des coefficients de la transformée en ondelettes discrète ... 21
 4.1.2 La moyenne des coefficients de la transformée en ondelettes discrète 26
 4.1.3 La variance des coefficients de la transformée en ondelettes discrète 27
 4.2 L’analyse statistique de la TOD d’une image perturbée par bruit additif . 28
 4.3 Conclusion ... 32
 4.4 L’analyse statistique de la TODDEI .. 34

5 L’analyse statistique du filtrage réalisé dans le domaine de la TODDE 35
 5.1 L’utilisation des filtres linéaires invariants en espace 36
 5.2 L’utilisation des filtres linéaires variants en espace 37
 5.2.1 L’utilisation des filtres de Wiener 37
 5.3 La maximisation de la probabilité a posteriori 57
 5.3.1 Le filtre de type *soft-thresholding* 60
 5.3.2 Le filtre de type *hard-thresholding* 67
 5.3.3 Solutions qui prennent en compte le caractère non-Gaussien du bruit . 73
 5.3.4 Solutions de filtrage qui prennent en compte l’échelle 77
 5.4 Conclusion ... 96
LE DÉBRUITAGE DES IMAGES SONAR EN UTILISANT LA TRANSFORMÉE EN ONDELETTES À DIVERSITÉ ENRICHIE

Alexandru ISAR*, Sorin MOGA**

** : GET ENST Bretagne / Département LUSSI – CNRS TAMCIC, France
* : Universitatea “Politehnica” din Timişoara, Roumanie

Abstract

Joli résumé.

Keywords : Keyword 1, Keywords 2, Keywords 3.
LE DÉBRUITAGE DES IMAGES SONAR EN UTILISANT LA TRANSFORMÉE EN ONDELETTES À DIVERSITÉ ENRICHIE

Alexandru ISAR*, Sorin MOGA**

** : GET ENST Bretagne / Département LUSSI – CNRS TAMCIC, France
* : Universitatea “Politehnica” din Timisoara, Roumanie

1 Introduction

Les images SONAR, $i_r(x, y)$ sont des images de type SAR. Ce type d’images est bruité par un bruit multiplicatif de type speckle, $b_r(x, y)$.

$$i_r(x, y) = i_0(x, y) \cdot b_r(x, y)$$ (1)

où $i_0(x, y)$ est l’image originelle.

Le bruit de type speckle est la conséquence de la cohérence de l’onde SONAR qui éclaire la scène (du fond marin). Chaque cellule de résolution est composée d’un grand nombre de réflecteurs élémentaires qui réfléchissent l’onde SONAR dans la direction du traducteur. Pour une surface de grande rugosité avec des composantes de dimensions bien inférieures à la longueur d’onde du SONAR, les réflecteurs élémentaires sont suffisamment nombreux pour assurer l’indépendance statistique en phase et amplitude de ces ondes réfléchies. Pour ce type de cible, le speckle est entièrement développé. Les phases élémentaires sont des variables aléatoires uniformément distribuées. La composante globale, la résultante de toutes ces ondes
réfléchies élémentaires, constitue la contribution de la cellule de résolution considérée. L'énergie captée par le traducteur pour une cellule de résolution peut être presque nulle ou très grande en accord avec le type d'interférence, destructive ou constructive, entre ces contributions élémentaires. En conséquence l'énergie captée peut varier d'une manière aléatoire entre différentes cellules de résolution. Les zones homogènes de l'image SONAR, ont une texture particulière, appelée speckle. Quand le speckle est entièrement développé, on peut considérer que les processus aléatoires \(i_0(x, y) \) et \(br(x, y) \) sont indépendants.

Pour diminuer ce bruit, en gardant la fidélité de l'image de fond marin, \(i_0(x, y) \), la plus grande possible, ont été proposées plusieurs méthodes par Kuan, Frost, Lee et autres [E.02]. Plus récemment ont été proposées des méthodes basées sur l'utilisation de la théorie des ondelettes [Lan99; FBB01; ATB02]. Ces méthodes ont à la base l’observation que les transformées en ondelettes discrètes concentrent l'énergie de l'image originelle, \(i_0(x, y) \), dans un petit nombre de coefficients et étalent l'énergie du bruit, qui perturbe par addition l'image originelle, dans tous les coefficients. Ces méthodes supposent donc, la transformation du bruit multiplicatif dans un bruit additif. Cette transformation peut être réalisée en suivant deux techniques :

- la substitution de la multiplication par addition (en fait la multiplication et une suite d'additions) [FBB01],

\[
i_r(x, y) = i_0(x, y) + [i_0(x, y) - 1] \cdot br(x, y)
\]

L'image utile \(i_0(x, y) \) est perturbée additivement par le bruit \([i_0(x, y) - 1] \cdot b_r(x, y) \);
Fig. 1 - Le schéma du système de débruitage proposé dans ce rapport.

- le calcul du logarithme du produit, [DJ94],

\[
\log[i_r(x, y)] = \log[i_0(x, y)] + \log[br(x, y)]
\]

L'image utile \(s(x, y) = \log[i_0(x, y)] \) est perturbée additivement par le bruit \(\log[br(x, y)] = b(x, y) \).

Dans ce travail-ci nous utiliserons la deuxième méthode, utilisée aussi en [Lan99]. La méthode de débruitage proposée par Donoho [DJ94], spécialisée pour le bruit de type additif, a trois pas :

1. le calcul d'une transformée en ondelettes discrète de l'image acquise, \(i_r(x, y) \),
2. le filtrage non linéaire adaptatif dans le domaine des ondelettes,
3. le calcul de la transformée en ondelettes discrète inverse.

Nous proposons dans ce travail-ci l'utilisation de la transformée en ondelettes à diversité enrichie, TODDE [IQL03; KII11; IB03].

En fait, la structure du système de débruitage proposé ici est présentée dans la Figure 1. A la sortie du système, après le calcul de la transformée en ondelettes à diversité enrichie inverse, TODDEI, et après l'inversion du logarithme, on obtient l'estimation de l'image du fond marin \(\hat{i}_0(x, y) \).
Le sujet de ce rapport est l’étude statistique du bruit de speckle et de toutes ses transformations imposées par le système de la Figure 1, dans le cas des images SAR. Finalement on fait la particularisation de tous ces résultats pour le cas des images SONAR.

Dans le deuxième chapitre, on étudie le bruit de speckle d’entrée. Pour le cas des images SAR ce bruit est distribué en suivant une loi Gamma dont le paramètre est le nombre des vues, L. Dans le troisième chapitre, on fait l’étude statistique du bruit obtenu après le calcul du logarithme du bruit de speckle. Dans le quatrième chapitre on étudie le bruit obtenu dans le domaine de la TODDE. Le paragraphe suivant sera dédié à l’analyse statistique du filtre adaptatif non linéaire, FNA. Le signal de la sortie de ce filtre représente la forme originelle de l’estimation proposée dans ce rapport, ici supposant que le bruit a été déjà entièrement éliminé.

Les derniers deux blocs du schéma de la Figure 1, font des opérations inverses aux opérations faites dans les premiers deux blocs du même schéma, en affectant seulement la forme d’onde du signal d’estimation mais ne touchant pas son contenu d’information. Le dernier chapitre de ce rapport fait l’adaptation de toutes les formules déduites dans les chapitres précédents au cas des images SONAR. On peut procéder comme ça parce que le bruit de type speckle dans le cas des images SONAR est réparti en suivant une loi χ^2 qui représente la particularisation de la loi Gamma pour la valeur unitaire du paramètre L.

2 L’analyse statistique du bruit de type *speckle*

Cette analyse a déjà été effectuée pour le cas des images SAR, dans plusieurs références bibliographiques, [Lan99],[ATB02],[FBB01]. Il y a deux modèles, celui basé sur une loi de
répartition de type Gamma et celui qui suppose la répartition du bruit en suivant une loi log-normale.

2.1 Un premier modèle du bruit de type speckle

En suivant [FBB01], qui se base sur la physique de la production des images SAR, nous pouvons rappeler les relations suivantes.

Le bruit de type speckle est un processus aléatoire stationnaire. Parce que les énergies correspondant à chaque cellule de résolution sont des variables aléatoires indépendantes, on peut considérer que ce le speckle est un processus aléatoire de type bruit blanc. Donc, à un moment donné il peut être modélisé par une variable aléatoire unidimensionnelle. La densité de probabilité de la variable aléatoire qui modélise le bruit de type speckle à un moment donné pour les images SAR à L nombre de vues suit une loi de répartition Gamma :

\[
f(x) = \frac{L^L}{\Gamma(L)} \cdot x^{L-1} \cdot e^{-Lx} \text{ pour } x \geq 0
\]

où, on a noté avec \(\Gamma \) la fonction Gamma, introduite par Euler :

\[
\Gamma(L) = \int_0^{\infty} t^{L-1} \cdot e^{-t} \, dt
\]

Cette densité de probabilité est représentée sur la figure 2 pour différentes valeurs du paramètre L.

On observe qu’au fur et à mesure que la valeur du L augmente, la densité de probabilité du bruit de type speckle devient de plus en plus ressemblante à une Gaussienne. Pour des petites valeurs du paramètre L, la densité de probabilité du bruit de type speckle est asymétrique, par rapport à l’axe vertical qui passe par sa valeur maximale. Pour L=1, la courbe
Fig. 2 – Différentes formes de la densité de probabilité d’un bruit de type speckle, obtenues pour différentes valeurs du paramètre L.

est complètement asymétrique, pour L=10, l’asymétrie est encore évidente. Pour des valeurs supérieures à L=100, l’asymétrie devient pratiquement invisible.

La fonction de répartition du bruit de type speckle est donnée par la relation :

\[F(x) = \frac{L^L}{\Gamma(L)} \int_0^x t^{L-1} \cdot e^{-t} \, dt = -\frac{L^{L-1}}{\Gamma(L)} \int_0^x t^{L-1} \cdot d(e^{-Lt}) \]

(4)

En notant par \(I_{L-1} \), l’intégrale du membre droit de la dernière relation on peut écrire la relation de récurrence suivante :

\[I_{L-1} = x^{L-1} \cdot e^{-Lx} + \frac{L-1}{L} I_{L-2} \]

(5)

qui conduit à la décomposition :

\[F(x) = 1 - e^{-Lx} \sum_{k=0}^{L-1} \frac{L^{L-k-1}}{(L-k-1)!} x^{L-k-1} \text{ pour } x \geq 0 \]

(6)

Dans la suite on calcule les premiers deux moments de la variable aléatoire qui décrit le bruit
de type speckle. La moyenne est égale à :

$$
\mu = \int_0^\infty t \cdot f(t) \, dt = \int_0^\infty \frac{L^L}{\Gamma(L)} t^L \cdot e^{-Lt} \, dt
$$

(7)

En faisant le changement de variable \(u = Lt \) dans l’intégrale du membre droit de la dernière relation, celle-ci peut être écrite sous la forme :

$$
\mu = \frac{L^L}{\Gamma(L)} \int_0^\infty \left(\frac{u}{L} \right)^L e^{-u} \frac{du}{L} = \frac{L^L}{\Gamma(L)} \frac{1}{L^{L+1}} \int_0^\infty u^L e^{-u} \, du = \frac{1}{L \Gamma(L)} \Gamma(L + 1)
$$

(8)

Mais :

$$
\Gamma(L + 1) = L \cdot \Gamma(L)
$$

(9)

Donc la moyenne de la variable aléatoire qui décrit le bruit de type speckle est égale à :

$$
\mu = 1
$$

(10)

On calcule dans la suite le moment d’ordre deux de la variable aléatoire \(X \), distribuée en suivant la loi Gamma.

$$
E[X^2] = \frac{L^L}{\Gamma(L)} \int_0^\infty x^{L+1} e^{-Lx} \, dx = \frac{L^L}{\Gamma(L)} \int_0^\infty \left(\frac{u}{L} \right)^{L+1} e^{-u} \frac{du}{L} = \frac{L^L}{\Gamma(L) L^{L+2}} \int_0^\infty u^{L+1} e^{-u} \, du = \frac{1}{L^2 \Gamma(L)} \Gamma(L + 2) = \frac{L + 1}{L}
$$

Donc la variance de cette variable aléatoire est :

$$
\sigma^2 = E[X^2] - \mu^2 = \frac{L + 1}{L} - 1 = \frac{1}{L}
$$

(11)
On constate que la moyenne et la variance de cette variable aléatoire diminuent quand la valeur du paramètre L augmente. On peut dire que la puissance du bruit de type speckle se concentre dans sa composante continue au fur et à mesure que le nombre de vues augmente.

2.2 Le deuxième modèle du bruit de type speckle

Dans d’autres références bibliographiques, [Lan99],[ATB02] la loi de distribution de la variable aléatoire qui modélise le bruit de type speckle est considérée de type log-normale. Une variable aléatoire log-normale, $X_{\text{log-normale}}$, est définie en utilisant une variable aléatoire normale, X_{normale}, de moyenne nulle et de variance unitaire, à l’aide de la relation suivante :

$$X_{\text{log-normale}} = m \cdot \exp \left(X_{\text{normale}} \cdot \sqrt{2 \log \left(\frac{M}{m} \right)} \right)$$ \hspace{1cm} (12)

où M représente la moyenne de la variable aléatoire et m sa médiane. Il y a une certaine connexion entre le nombre de vues de l’image à traiter, L et la valeur de M. Les auteurs de [GJ97] affirment que ce modèle est approprié pour les images SAR de haute résolution.

3 L’analyse statistique du logarithme du bruit de type speckle

Comme il a déjà été dit dans l’introduction, la méthode de transformation du bruit multiplicatif dans un bruit additif, choisie pour l’implémentation de la méthode de débruitage proposée dans ce rapport, suppose le calcul du logarithme de l’image acquise. Dans le deuxième chapitre de ce rapport on a montré qu’il y a deux modèles statistiques pour le bruit de type speckle, le modèle basé sur la loi Gamma et le modèle basé sur la loi log-normale. Dans la
suite on étudie l’effet de l’application du logarithme à ces deux variables aléatoires.

3.1 La loi log-Gamma

Si on prend le modèle du bruit de speckle présenté dans le paragraphe 2.1. et que l’on fait le changement de variable \(y = \ln x \), alors la variable aléatoire \(X_{\Gamma} \) se transforme dans la variable aléatoire \(Y_{\text{log-}\Gamma} \). La relation entre les densités de probabilité de ces deux variables aléatoires est :

\[
f_{Y_{\text{log-}\Gamma}}(y) = \frac{f_{X_{\Gamma}}(x)}{\left| \frac{dy}{dx} \right|} = \frac{L^L}{\Gamma(L)} x^{L-1} e^{-Lx} \left(\frac{1}{x} \right) = \frac{L^L}{\Gamma(L)} x^{L} e^{-Lx} = \frac{L^L}{\Gamma(L)} e^{\text{log-}\Gamma} e^{-\text{log-}\Gamma} \tag{13}
\]

Dans les figures suivantes les représentations graphiques de la densité de probabilité de la variable aléatoire repartie en suivant la loi log-Gamma pour différentes valeurs du paramètre \(L \), sont présentées.

En analysant les trois dernières figures on constate que la densité de probabilité de la
Fig. 4 – La loi log-Gamma pour L de valeur 10.

Fig. 5 – La loi log-Gamma pour L de valeur 100.
variable aléatoire de type log-Gamma est asymétrique par rapport à la ligne verticale qui passe par son maximum et que cette asymétrie diminue avec l’augmentation de la valeur du nombre de vues, \(L \). Pour \(L \) élevé l’asymétrie disparaît. La ligne discontinue de la Figure 5 représente une Gaussienne. On peut constater que pour des valeurs importantes du paramètre \(L \) la loi log-Gamma est très bien approximée par une Gaussienne.

Dans la suite on calcule la moyenne et la variance de la loi log-Gamma. La moyenne a la valeur suivante :

\[
\mu = \int_{-\infty}^{\infty} \frac{L^L y \cdot e^{Ly} \cdot e^{-Le^y}}{\Gamma(L)} \, dy
\]

En intégrant par parties on obtient :

\[
\mu = \frac{L^{L-1}}{\Gamma(L)} \int_{-\infty}^{\infty} e^{(L-1)y} e^{-Le^y} \, dy + \frac{L^{L-1}(L - 1)}{\Gamma(L)} \int_{-\infty}^{\infty} ye^{(L-1)y} e^{-Ly} \, dy
\]

(14)

Pour calculer la première intégrale du membre droit on exprime la valeur de la fonction de répartition de la variable aléatoire repartie en suivant une loi log-Gamma, à l’infini :

\[
\int_{-\infty}^{\infty} \frac{L^L}{\Gamma(L)} e^{Ly} e^{-Le^y} \, dy = 1
\]

(15)

ou :

\[
\int_{-\infty}^{\infty} e^{Ly} e^{-Le^y} \, dy = \frac{\Gamma(L)}{L^L}
\]

(16)

En intégrant par parties le membre gauche de la dernière relation, on peut écrire :
\[\int_{-\infty}^{\infty} e^{(L-1)y} e^{-Le^y} dy = \frac{1}{(L-1)L^{L-1}} \Gamma(L) \]

(17)

En substituant la relation (17) dans la relation (14), la valeur de la moyenne de la distribution log-Gamma peut être écrite sous la forme :

\[\mu = \frac{1}{L-1} + \frac{L^{L-1}(L-1)}{\Gamma(L)} \int_{-\infty}^{\infty} ye^{(L-1)y} e^{-Le^y} dy = \frac{L^L}{\Gamma(L)} \int_{-\infty}^{\infty} ye^y e^{-Le^y} dy \]

(18)

En notant par \(I_L \) l’intégrale du membre droit de la dernière relation, celle-ci peut être regardée comme une relation de récurrence :

\[I_L = \frac{L-1}{L} I_{L-1} + \frac{1}{L-1} \frac{\Gamma(L)}{L^L} \]

(19)

En exprimant successivement toutes les intégrales du membre droit de la dernière relation par rapport à \(I_1 \), l’expression de la moyenne peut être écrite sous la forme :

\[\mu = LI_1 + \sum_{k=1}^{L-1} \frac{1}{k} \]

(20)

La seule chose qui reste à faire pour le calcul de la moyenne est le calcul de l’intégrale \(I_1 \). L’expression de celle-ci est la suivante :

\[I_1 = \int_{-\infty}^{\infty} ye^y e^{-Le^y} dy \]

(21)

En faisant le changement de variable \(e^y = t \), on obtient:
\[I_1 = \int_0^\infty \ln t \cdot e^{-Lt} \, dt = \int_0^\infty \ln t \cdot e^{-Lt} \, dt \quad (22) \]

ou, en faisant un nouveau changement de variable, \(Lt = u \), l’intégrale devient :

\[I_1 = \int_0^\infty \ln \left(\frac{u}{L} \right) \cdot e^{-u} \, du \]
\[= \frac{1}{L} \left(\int_0^\infty \ln u \cdot e^{-u} \, du - \ln L \int_0^\infty e^{-u} \, du \right) \quad (23) \]

Mais le premier terme de la somme contenue dans la parenthèse du membre droit de la dernière relation peut être calculé en utilisant la relation :

\[\int_0^\infty e^{-u} \cdot \ln u \, du = -\gamma \quad (24) \]

comme on peut constater en consultant l’adresse :

http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html où \(\gamma \) représente le nombre d’Euler\(^1\). Le deuxième terme de la même parenthèse peut être calculé normalement :

\[\int_0^\infty e^{-u} \, du = -e^{-u}\bigg|_0^\infty = 1 \quad (25) \]

En substituant les deux dernières relations dans (23) on obtient la valeur de l’intégrale :

\[I_1 = \frac{1}{L}(-\gamma - \ln L) = -\frac{1}{L}(\gamma + \ln L) \quad (26) \]

En substituant cette valeur dans la relation (20) on obtient la valeur finale de la moyenne de la loi log-Gamma :

\(^1\text{voir : http://membres.lycos.fr/villemingerard/Nombre/ConEuler.htm}\)
\[\mu = \sum_{k=1}^{L-1} \frac{1}{k} - \gamma - \ln L \quad (27) \]

Pour \(L \) de valeur 1, la valeur de la moyenne est \(-\gamma\). Le nombre d’Euler peut être approximé par la valeur 0,577. Dans la suite on calcule la variance de la loi log-Gamma. On commence avec le calcul du moment d’ordre 2 de cette loi.

\[M_2 = \int_{-\infty}^{\infty} \frac{L^L}{\Gamma(L)} y^2 e^{Ly} e^{-Le^y} dy \quad (28) \]

Avec la notation \(J_L = \int_{-\infty}^{\infty} y^2 e^{Ly} e^{-Le^y} dy \), en intégrant par parties dans le membre droit de la dernière relation on obtient :

\[M_2 = \frac{L^L}{\Gamma(L)} J_L = \frac{L^L}{\Gamma(L)} \left(\frac{2}{L} I_{L-1} + \frac{L - 1}{L} J_{L-1} \right) \quad (29) \]

Parce que l’intégrale \(I_L \) a été déjà calculée :

\[I_L = \mu \frac{\Gamma(L)}{L^L} \quad (30) \]

on peut obtenir facilement la valeur du premier terme de la parenthèse du membre droit de la relation (31) :

\[I_{L-1} = \left(\frac{L}{L - 1} \right) \left(I_L - \frac{1}{L - 1} \frac{\Gamma(L)}{L^L} \right) = \left(\frac{L}{L - 1} \right) \left(\mu - \frac{1}{L - 1} \right) \frac{\Gamma(L)}{L^L} \quad (31) \]

Donc l’expression du moment d’ordre 2 est :
\[M_2 = \frac{2}{L-1} \left(\mu - \frac{1}{L-1} \right) + \frac{(L-1)L^{L-1}}{\Gamma(L)} J_{L-1} = \frac{L^L}{\Gamma(L)} J_L \]

(32)

et l’intégrale \(J_L \) peut être calculée en utilisant la relation de récurrence suivante :

\[J_L = \frac{2\Gamma(L)}{L^L(L-1)} \left(\mu - \frac{1}{L-1} \right) + \frac{L-1}{L} J_{L-1} \]

(33)

En continuant la récurrence jusqu’à 1, on peut écrire :

\[J_L = \frac{2\Gamma(L)}{L^L(L-1)} \left(\mu - \frac{1}{L-1} \right) + \frac{(L-1)(L-2)}{L^2} J_{L-2} \]

(34)

\[J_L = \frac{2\Gamma(L)}{L^L(L-1)} \left(\mu - \frac{1}{L-1} \right) + \frac{(L-1)(L-2)...2}{L^{L-1}} J_1 \]

(35)

Donc la valeur du moment d’ordre deux est :

\[M_2 = \frac{2}{L-1} \left(\mu - \frac{1}{L-1} \right) + \frac{L^L}{\Gamma(L)} \frac{(L-1)!}{L^{L-1}} J_1 \]

(36)

\[M_2 = \frac{2}{L-1} \left(\mu - \frac{1}{L-1} \right) + LJ_1 \]

(37)

Pour conclure, il faut calculer la valeur de l’intégrale \(J_1 \). L’expression de celle-ci est la suivante :

\[J_1 = \int_{-\infty}^{\infty} y^2 e^y e^{-Le^y} dy \]

(38)

En faisant le changement de variable \(t = e^y \) on peut écrire :

\[J_1 = \int_{0}^{\infty} (\ln t)^2 \cdot e^{-Lt} dt \]

(39)
ou, après le changement de variable \(u = Lt \):

\[
J_1 = \int_0^\infty \ln^2 \left(\frac{u}{L} \right) e^{-u} \frac{du}{L} = \frac{1}{L} \left(\int_0^\infty \ln^2 u \cdot e^{-u} du - 2\ln L \int_0^\infty \ln u \cdot e^{-u} du + \ln^2 L \int_0^\infty e^{-u} du \right)
\]

(40)

La dernière intégrale du membre droit a déjà été calculée plus haut. L’avant-dernière intégrale a également été calculée (voir la relation (24)). En utilisant de nouveau l’adresse web, mentionnée plus haut on trouve, pour la première intégrale du membre droit, la valeur :

\[
\int_0^\infty e^{-u} \cdot \ln^2 u du = \gamma^2 + \frac{\pi^2}{6}
\]

(41)

Donc la valeur de l’intégrale \(J_1 \) est :

\[
J_1 = \frac{1}{L} \left(\frac{\pi^2}{6} + (\gamma + \ln L)^2 \right)
\]

(42)

et la valeur du moment d’ordre deux de la loi log-Gamma est :

\[
M_2 = \frac{\pi^2}{6} - \sum_{k=1}^{L-1} \frac{1}{k^2} + \left(\sum_{k=1}^{L-1} \frac{1}{k} - \gamma - \ln L \right)^2
\]

(43)

Cette formule est également mentionnée en [Ber80]. Donc la variance de la loi log- Gamma est égale à :

\[
\sigma^2 = M_2 - \mu^2 = \frac{\pi^2}{6} - \sum_{k=1}^{L-1} \frac{1}{k^2}
\]

(44)

Pour \(L \) de valeur 1, cette variance est égale à \(\frac{\pi^2}{6} \). On constate que la variance de cette variable aléatoire diminue quand la valeur du paramètre \(L \) augmente. On peut dire que la puissance du bruit de type speckle se concentre dans sa composante continue au fur et à mesure que le nombre de vues augmente. En fait \(\frac{\pi^2}{6} \) est la somme de la série de terme général \(\frac{1}{k^2} \), donc pour
L’effet tend vers infini σ^2 tend vers zéro. Cet effet peut être observé en analysant les figures 3, 4 et 5. En conclusion dans la suite le logarithme du *speckle* qui perturbe le logarithme des images SONAR sera considéré comme un processus aléatoire de type bruit blanc, à densité de probabilité, moyenne et variance, données par les relations :

\[
f_{\chi^2}(y) = e^y e^{-e^y}
\]

\[
E\{\chi^2\} = -\chi
\]

\[
E\{(\chi^2)^2\} = \frac{\pi^2}{6}
\]

3.2 La transformation de la loi log-normale par logarithme

Comme il a déjà été montré, la répartition du bruit de *speckle* peut être modélisée en utilisant une loi log-normale. La variable aléatoire X_i, obtenue par le calcul du logarithme de la variable aléatoire répartie en suivant cette loi log-normale, exprimée à l’aide de la variable aléatoire normalement répartie X_n (voir la relation (12)) a la densité de probabilité suivante :

\[
f_{X_i}(y) = f_{X_n}(x) \left(\frac{1}{c} f_{X_n} \left(\frac{y - \ln m}{c} \right) \right) = f_{cX_n} \left(\frac{y - \ln m}{c} \right)
\]

où on a utilisé la notation $c = \sqrt{\ln M_x^2}$. Donc la répartition de la variable aléatoire X_i est décrite par une loi Gaussienne, parce que les transformations affines conservent le caractère Gaussien.

Donc pour tous les modèles du bruit de *speckle*, couramment utilisés dans la littérature, pour le cas où le nombre de vues, L, est grand, on peut considérer qu’après le calcul du logarithme on obtient un nouveau bruit, dont la densité de probabilité unidimensionnelle est une Gaussienne.
4 L’analyse statistique de la TODDE

Le principe de calcul de la transformée en ondelettes discrète à diversité enrichie, TODDE, est présenté dans la figure 6.

C’est une transformée redondante, qui réalise la correspondance entre la matrice d’entrée, $x_i[k,l]$ et la matrice tridimensionnelle TODDE[[k,l], m]. Chaque colonne de cette matrice représente l’image de la transformée en ondelettes discrète, TOD, de la matrice d’entrée, calculée en utilisant une ondelette mère différente. Cette transformation peut être inversée. En inversant chaque colonne, à l’aide de la transformée en ondelettes inverse, TODI, correspondante, on obtient une nouvelle matrice. En calculant la moyenne arithmétique des colonnes de celle-ci, l’image initiale, $x_i[k,l]$, est reconstruite.

Parce que la TODDE est une combinaison de plusieurs TOD, on commence avec l’analyse statistique de la TOD.
4.1 L’analyse statistique de la transformée en ondelettes discrète

Une itération de la transformée en ondelettes discrète d’une image est réalisée par le schéma présenté dans la figure 7.

L’image d’entrée représente la sous-image d’approximation obtenue à l’itération antérieure, \(m-1, D_{m-1}^4\) et à la sortie sont obtenues les sous-images d’approximation, \(D_m^4\) et les sous-images de détail \(D_m^3, D_m^2\) et \(D_m^1\). L’entrée de la première itération est l’image numérique à traiter, \(D_0^4\), obtenue par l’échantillonnage de l’image x. Les coefficients d’une sous-image peuvent être calculés en utilisant la relation suivante :

\[
D_m^k[n,p] = < x(\tau_1, \tau_2), \psi_{m,n,p}^k(\tau_1, \tau_2) > \quad k = 0, 4 \tag{46}
\]

où l’ondelette mère peut être factorisée à l’aide du produit :
\[
\psi_{m,n,p}^k(\tau_1, \tau_2) = \alpha_{m,n,p}^k(\tau_1)\beta_{m,n,p}^k(\tau_2)
\] (47)

et les deux facteurs peuvent être calculés à l'aide des fonctions d'échelle \(\varphi(\tau)\) et ondelette mère \(\psi(\tau)\) en utilisant les relations suivantes :

\[
\alpha_{m,n,p}^k(\tau) = \begin{cases}
\varphi_{m,n}(\tau) & k = 1, 4 \\
\psi_{m,n}(\tau) & k = 2, 3
\end{cases}
\]

\[
\beta_{m,n,p}^k(\tau) = \begin{cases}
\varphi_{m,n}(\tau) & k = 2, 4 \\
\psi_{m,n}(\tau) & k = 1, 3
\end{cases}
\]

où :

\[
\varphi_{m,n}(\tau) = 2^{-\frac{m}{2}}\varphi(2^{-m}\tau - n) \ et \ \psi_{m,n}(\tau) = 2^{-\frac{m}{2}}\psi(2^{-m}\tau - n)
\] (48)

Dans la figure 8 est présenté un exemple de calcul de la première itération de la transformée en ondelettes de l'image de l'épave Swansea\(^2\).

Dans le coin supérieur-gauche, on peut observer l'image d'approximation, \(D_1^l[n,p]\) \(n = 1, 256 \quad p = 1, 256\) et dans les autres coins les images de détails horizontaux, verticaux et obliques, \(D_j^l[n,p]\) \(j = 1, 3\). Dans la figure 9 est présenté le résultat de l'application de la transformée en ondelettes discrète à deux itérations pour la même image. Cette fois-ci on peut distinguer l'image d'approximation, toujours située dans le coin de haut-gauche et six images de détails. Pour obtenir ces images on a utilisé les ondelettes de Haar. Dans la suite

\(^2\)reçu grâce à GESMA, par l'amabilité de Monsieur Michel Legris
FIG. 8 – Le résultat de la première itération de la transformée en ondelettes discrète de l’image Swansea.

est présentée une analyse statistique de la transformée en ondelettes discrète basée sur les hypothèses de factorisation de l’ondelette mère (la relation (47) est vérifiée) et d’orthogonalité (les familles définies dans la relation (48) sont orthogonales).

4.1.1 La fonction de corrélation des coefficients de la transformée en ondelettes discrète

La fonction de corrélation de la variable aléatoire $D^k_m[n,p]$ est donnée par la relation :

$$\Gamma_{\psi_{D^k_m}}[n_1,n_2,p_1,p_2] = E\{D^k_m[n_1,p_1] (D^k_m[n_2,p_2])^* \}$$

$$\Gamma_{\psi_{D^k_m}}[n_1,n_2,p_1,p_2] = \int_{R^4} E\{x(\tau_1, \tau_2)x^*(\tau_3, \tau_4)\} : \psi_{m,n_1,p_1}^k(\tau_1, \tau_2)\psi_{m,n_2,p_2}^k(\tau_3, \tau_4) d\tau_1 d\tau_2 d\tau_3 d\tau_4$$

21
FIG. 9 – Le résultat de l’application de la transformée en ondelettes discrète à deux itérations à l’image Swansea.

ou, en tenant compte que le premier facteur de la fonction qui doit être intégrée représente la fonction de corrélation de l’image x, \(\Gamma_x(u,v) \), considérée comme un processus aléatoire en deux dimensions stationnaires, on peut écrire :

\[
\Gamma_{xD_m}[n_1, n_2, p_1, p_2] = \\
= \int_{R^4} \Gamma_x(\tau_1 - \tau_3, \tau_2 - \tau_4) \cdot \psi^{k}_{m,n_1,p_1}^*(\tau_1, \tau_2) \psi^{k}_{m,n_2,p_2}(\tau_3, \tau_4) d\tau_1 d\tau_2 d\tau_3 d\tau_4
\]

En changeant l’ordre d’intégration on peut écrire :

\[
\Gamma_{xD_m}[n_1, n_2, p_1, p_2] = \\
= \int_{R^2} \psi^{k}_{m,n_1,p_1}^*(\tau_1, \tau_2) \int_{R^2} \psi^{k}_{m,n_2,p_2}(\tau_1, \tau_2) \Gamma_x(\tau_1 - \tau_3, \tau_2 - \tau_4) d\tau_3 d\tau_4 d\tau_1 d\tau_2 =
\]
\[= \int_{R^2} \psi^{k}_{m,n_1,p_1}^*(\tau_1, \tau_2) \left(\Gamma_x * \psi^{k}_{m,n_2,p_2} \right)(\tau_1, \tau_2) d\tau_1, d\tau_2 \]

En appliquant l’identité de Parseval pour la transformée de Fourier en deux dimensions, \(F_2 \), la dernière relation prend la forme suivante :

\[\Gamma_{xD^m}[n_1, n_2, p_1, p_2] = \frac{1}{4\pi^2} \int_{R^2} F^*_2 \left\{ \psi^{k}_{m,n_1,p_1}(\tau_1, \tau_2) \right\} \cdot \gamma_x(\omega_1, \omega_2) F_2 \left\{ \psi^{k}_{m,n_2,p_2} \right\}(\omega_1, \omega_2) d\omega_1 d\omega_2 \quad (49) \]

où la densité spectrale de puissance du processus aléatoire \(x \) a été notée par \(\gamma_x \). Mais la transformée de Fourier en deux dimensions de l’ondelette \(\psi^{k}_{m,n,p}(u, v) \) peut être exprimée à l’aide de la transformée de Fourier en deux dimensions de l’ondelette mère \(\psi^k(u, v) \) en utilisant la relation :

\[F_2 \left\{ \psi^{k}_{m,n,p} \right\}(\omega_1, \omega_2) = 2^m \cdot e^{-j\omega_1 n_2^m} \cdot e^{-j\omega_2 n_2^m} \cdot F_2 \left\{ \psi^k \right\}(\omega_1, \omega_2) \quad (50) \]

En substituant la relation (50) dans (49), celle-ci prend la forme suivante :

\[\Gamma_{xD^m}[n_1, n_2, p_1, p_2] = \frac{1}{4\pi^2} \cdot 2^m \int_{R^2} \gamma_x(\omega_1, \omega_2) \cdot \left| F_2 \left\{ \psi^k \right\}(\omega_1, \omega_2) \right|^2 \cdot e^{-j[\omega_1(n_2-n_1)+\omega_2(p_2-p_1)]} \cdot 2^m d\omega_1 d\omega_2 \quad (51) \]

En faisant les changements de variables \(v_1 = 2^m \omega_1 \) et \(v_2 = 2^m \omega_2 \), la dernière relation peut être écrite sous la forme :

\[\Gamma_{xD^m}[n_1, n_2, p_1, p_2] = \frac{1}{4\pi^2} \int_{R^2} \gamma_x(2^{-m}v_1, 2^{-m}v_2) \cdot \left| F_2 \left\{ \psi^k \right\}(v_1, v_2) \right|^2 \cdot e^{-j[v_1(n_2-n_1)+v_2(p_2-p_1)]} \cdot dv_1 dv_2 \quad (52) \]
On peut constater facilement que les coefficients de la transformée en ondelettes discrète respectent l’une des conditions de stationnarité d’ordre 2 :

$$\Gamma_{xD_m^k}[n_1, n_2, p_1, p_2] = \Gamma_{xD_m^k}[n_1 - n_2, p_1 - p_2]$$ (53)

OBSERVATIONS.

O1. On étudie le cas quand le nombre d’itérations de la transformée en ondelettes discrète, m, tend vers infini. Dans ce cas-ci :

$$\lim_{m \to \infty} \gamma_x(2^{-m}v_1, 2^{-m}v_2) = \gamma_x(0, 0)$$ (54)

et la fonction de corrélation des coefficients de la transformée en ondelettes prend la forme :

$$\Gamma_{xD_\infty^k}[n, p] = \frac{\gamma_x(0, 0)}{4\pi^2} \int_{R^2} |F_2(\psi^k)(v_1, v_2)|^2 \cdot e^{-j[v_1n + v_2p]} dv_1 dv_2$$ (55)

En tenant compte du fait que la fonction $|F_2(\psi^k)(v_1, v_2)|^2$ représente la densité spectrale de puissance de l’ondelette mère ψ^k et en appliquant l’identité de Wiener-Hinclin on peut écrire :

$$\Gamma_{xD_\infty^k}[n, p] = \frac{\gamma_x(0, 0)}{4\pi^2} \cdot F_2\{F_2(\Gamma_{\psi}^k)(v_1, v_2)\}(n, p)$$ (56)

ou, en utilisant le théorème de symétrie sur l’espace $L^2(R^2)$:

$$\Gamma_{xD_\infty^k}[n, p] = \frac{\gamma_x(0, 0)}{4\pi^2} \cdot 4\pi^2 \cdot \Gamma_{\psi}^k(-n, -p)$$ (57)

Tenant compte de la factorisation des ondelettes décrite dans la relation (47), pour $m = n = p = 0$, le dernier facteur du membre gauche de la relation antérieure peut être mis sous la forme :

24
\[\Gamma^k_\psi(-n, -p) = \int_{\mathbb{R}^2} \psi^k(\tau_1, \tau_2) \cdot \psi^{k*}(\tau_1 - n, \tau_2 - p) d\tau_1 d\tau_2 = \]

\[= \Gamma^k_\alpha(-n) \cdot \Gamma^k_\beta(-p) \]

Mais les fonctions \(\alpha^k \) et \(\beta^k \) sont des fonctions génératrices de bases orthonormales. On peut donc écrire :

\[\Gamma_{\alpha^k}(n) = \delta[n] \quad et \quad \Gamma_{\alpha^k}(p) = \delta[p] \] (58)

La fonction de corrélation des coefficients de la transformée en ondelettes discrète est donc donnée, pour le cas où le nombre d’itérations, \(m \), tend vers l’infini, par la relation :

\[\Gamma_{xD^k}[n, p] = \gamma_x(0, 0) \cdot \delta[n] \cdot \delta[p] \] (59)

qui représente la fonction de corrélation d’un bruit blanc. En conséquence tous les types des coefficients de la transformée en ondelettes discrète d’un signal aléatoire, \(x \), coefficients d’approximation ou coefficients de détails horizontaux, verticaux ou diagonaux, convergent asymptotiquement, quand le nombre d’itérations tend vers l’infini, vers un bruit blanc. On peut donc affirmer que la transformée en ondelettes discrète converge asymptotiquement vers la transformée de Karhunen-Loève. La vitesse de convergence dépend de la densité de puissance du processus aléatoire d’entrée, \(x \). Pour un processus aléatoire d’entrée spécifié, cette vitesse de convergence dépend de la sélection de l’ondelette mère, \(\psi(\tau) \). Pour obtenir une meilleure vitesse de convergence il faut utiliser une ondelette mère avec un nombre augmenté.
de moments nuls. En conclusion la transformée en ondelettes discrète est une transformée sous-optimale. Son avantage sur la transformée de Karhunen-Loève est la vitesse de calcul.

O2. On étudie le cas où le signal aléatoire d’entrée est un bruit blanc, de moyenne nulle et de variance σ^2. Dans ce cas-ci :

$$\gamma_x(2^{-m}v_1,2^{-m}v_2) = \sigma^2$$

(60)

et l’expression de la fonction de corrélation des coefficients de la transformée en ondelettes discrète est :

$$\Gamma_{bbD_n}(n,p) = \frac{\sigma^2}{4\pi^2} \int_{\mathbb{R}^2} |F_2\{\psi^k\}(v_1,v_2)|^2 e^{-j(v_1 n + v_2 p)} dv_1 dv_2$$

(61)

Cette intégrale a déjà été calculée. Donc l’expression de la fonction de corrélation des coefficients de la transformée en ondelettes discrète est :

$$\Gamma_{bbD_n}(n,p) = \sigma^2 \cdot \delta[n] \cdot \delta[p]$$

(62)

En conclusion, les séquences de coefficients de la transformée en ondelettes discrète d’un bruit blanc sont des bruits blancs à temps discret de même variance. La sélection de l’ondelette mère n’est pas importante, le résultat est le même pour chaque ondelette mère.

4.1.2 La moyenne des coefficients de la transformée en ondelettes discrète

En prenant l’espérance mathématique des coefficients de la transformée en ondelettes discrète on peut écrire :

$$E\{D^k_n[n,p]\} = E\{\int_{\mathbb{R}^2} x(\tau_1, \tau_2) \cdot \psi^*_{m,n,p}(\tau_1, \tau_2) d\tau_1 d\tau_2\} =$$
\[= \mu_x \cdot F_2\{\psi_{m,n,p}^k\}(0, 0) = \mu_x \cdot 2^m \cdot F_2\{\psi^k\}(0, 0) = \]
\[= \mu_x \cdot 2^m \cdot F\{\alpha^k\}(0) \cdot F\{\beta^k\}(0) = \begin{cases} 0 & k = 1, 2, 3 \\ 2^m \cdot \mu_x & k = 4 \end{cases} \]

où on a noté avec \(F \) la transformée de Fourier unidimensionnelle et \(\mu_x \) représente la moyenne de l’entrée. Si \(\mu_x = 0 \), alors la moyenne des coefficients de la transformée en ondelettes discrète de tous les types est nulle.

4.1.3 La variance des coefficients de la transformée en ondelettes discrète

On commence avec le calcul de la variance des coefficients de détail de la transformée en ondelettes discrète. Pour \(k \) de valeurs 1, 2 et 3 on peut écrire :

\[\sigma^2_{xD_m^k} = E\{|D_m^k[n,p]|^2\} = \Gamma_{xD_m^k}(0, 0) = \]
\[= \frac{1}{4\pi^2} \int_{R^2} \gamma_x(2^m v_1, 2^m v_2) |F_2\{\psi^k\}(v_1, v_2)|^2 \, dv_1 dv_2 \]

La variance des coefficients d’approximation de la transformée en ondelettes discrète correspond au cas \(k = 4 \) et peut être calculée en utilisant la formule suivante :

\[\sigma^2_{xD_m^4} = E\{(D_m^4[n,p] - \mu_{xD_m^4})^2\} = E\{D_m^4[n,p]\}^2 - \mu_{xD_m^4}^2 = \]
\[= \frac{1}{4\pi^2} \int_{R^2} \gamma_x(2^m v_1, 2^m v_2) \cdot |F_2\{\varphi\}(v_1)|^2 \cdot |F_2\{\varphi\}(v_2)|^2 \, dv_1 dv_2 - 2^m \mu_x^2 \]

OBSERVATIONS

01. Si \(x \) est un bruit blanc de moyenne nulle, \(\mu_x = 0 \), alors :

\[\sigma^2_{xD_m^4} = E\{(D_m^4[n,p] - \mu_{xD_m^4})^2\} = E\{D_m^4[n,p]\}^2 - \mu_{xD_m^4}^2 = \]
\[\begin{align*}
&= \frac{\sigma^2}{4\pi^2} \int_R |F\{\varphi\}(v_1)|^2 \, dv_1 \cdot \int_R |F\{\varphi\}(v_2)|^2 \, dv_2 \\
\text{Mais, grâce à l’identité de Parseval, on peut écrire :}
&= 2\pi \cdot \int_R |\varphi(\tau)|^2 \, d\tau = 2\pi
\end{align*}\]

parce que la fonction \(\varphi(\tau)\) engendre une base orthonormale. Donc, la variance des coefficients d’approximation de la transformée en ondelettes discrète d’un bruit blanc de moyenne nulle est donnée par :

\[\sigma_{\text{blmnd}}^2 = \sigma^2\]

(64)

O2. Si \(x\) est un bruit blanc de moyenne non nulle \((\mu_x \neq 0)\) alors la variance des coefficients d’approximation de la transformée en ondelettes discrète est donnée par la relation :

\[\sigma_{\text{blmnd}}^2 = \sigma^2 - 2^m \cdot \mu_x^2\]

(65)

Donc, dans ce cas-ci la variance du bruit dans les sous-images d’approximation diminue avec l’augmentation du nombre d’itérations.

4.2 L’analyse statistique de la TOD d’une image perturbée par bruit additif

Dans le cas étudié dans ce rapport, l’image \(x\) est le logarithme de l’image acquise et est la somme des logarithmes de l’image originale \(s\) et de l’image de bruit \(b\). La relation (52) devient :

\[\Gamma_{D_m} = E\{(D_m^k + D_{bm}^k)^2\} = E\{(D_m^k)^2\} + E\{(D_{bm}^k)^2\} = \Gamma_{D_{sm}} + \Gamma_{D_{bm}}\]

(66)
parce que les transformées en ondelettes des deux signaux non corrélés sont aussi non corrélées. En tenant compte de l’hypothèse faite sur l’image de bruit (processus aléatoire de type bruit blanc de variance $\sigma_b^2 = \frac{\pi^2}{6}$ et de moyenne $-\gamma$) et de la relation (62), la dernière relation devient:

$$\Gamma_{sD_b}[n,p] = \left\{ \begin{array}{ll}
\Gamma_{sD_b[n,p]} + \sigma_b^2 \delta[n] \delta[p] & k = 1, 2, 3 \\
\Gamma_{sD_b[n,p]} + (\sigma_b^2 - 22m^2 \gamma^2) \delta[n] \delta[p] & k = 4
\end{array} \right.$$ (67)

Dans la suite on calcule l’auto-corrélation de la TOD de l’image utile. A ce but on peut substituer dans la relation (52) x par s. On obtient:

$$\Gamma_{sD_b[n,p]} = \frac{1}{4\pi^2} \int_{R^2} \gamma_s(2^{-m}v_1, 2^{-m}v_2) \cdot |F_2(\psi^k)(v_1, v_2)|^2 \cdot e^{-j(v_1n+v_2p)} dv_1 dv_2$$ (68)

ou, en exprimant chaque intégrale de membre droit par une somme d’intégrales calculées sur des intervalles adjacents de longueur 2π:

$$\Gamma_{sD_b}[n,p] = \frac{1}{4\pi^2} \sum_q \sum_r \int_{(2q-1)\pi}^{(2q+1)\pi} \int_{(2r-1)\pi}^{(2r+1)\pi} \gamma_s(2^{-m}v_1, 2^{-m}v_2) \cdot |F_2(\psi^k)(v_1, v_2)|^2 \cdot e^{-j(v_1n+v_2p)} dv_1 dv_2$$ (69)

En utilisant la notation:

$$A(v_1, v_2) = \gamma_s(2^{-m}v_1, 2^{-m}v_2) \cdot |F_2(\psi^k)(v_1, v_2)|^2$$ (70)

la dernière relation devient, à l’aide de changement de variables $u_1 = v_1 - 2q\pi$, $u_2 = v_2 - 2r\pi$:

$$\Gamma_{sD_b}[n,p] = \frac{1}{4\pi^2} \sum_q \sum_r \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} A(u_1 + 2q\pi, u_2 + 2r\pi) \cdot e^{-j(u_1n+u_2p)} du_1 du_2$$ (71)
Avec la notation :

\[B(u_1, u_2) = \sum_q \sum_r A(u_1 + 2q\pi, u_2 + 2r\pi), \]

da dernière relation devient :

\[\Gamma_{SD_m}[n, p] = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} B(u_1, u_2) \cdot e^{-j(u_1n + u_2p)} \, du_1 \, du_2 = b[n, p] \quad (72) \]

parce que l’intégrale double représente la transformée de Fourier à temps discret bidimensionnelle inverse de la fonction \(B(u_1, u_2) \). Mais cette fonction représente le spectre du signal \(a(x, y) \), échantillonné à pas unitaire. On peut donc écrire :

\[b[n, p] = a[n, p] \quad (73) \]

Le spectre du signal \(a(x, y) \) est donné par la relation (70). Ce spectre est un produit de deux facteurs. Dans la suite, on identifie les signaux dont les spectres représentent ces deux facteurs. Le premier facteur représente la densité spectrale de puissance de l’image \(s \), calculée en \((2^{-m}v_1, 2^{-m}v_2) \). Le signal correspondant est donc \(2^{2m}\Gamma_s(2^m x, 2^m y) \).

Le deuxième facteur est la densité spectrale de puissance de la fonction \(\psi^k(x, y) \). Donc l’équivalence dans le domaine original de la relation (70) est : \(a[n, p] = 2^{2m}\Gamma_s(2^mn, 2^mp) \ast \Gamma_{\psi^k}(n, p) \)

En tenant compte des relations (58), (72) et (73) on peut finalement écrire :

\[\Gamma_{SD_m}[n, p] = 2^{2m}\Gamma_s[2^mn, 2^mp] \quad (74) \]
C’est une relation très simple qui exprime la corrélation des coefficients de la TOD du logarithme de l’image utile, s, à l’aide de l’auto-corrélation de cette image. On constate qu’avec la croissance du nombre d’itérations, m, les coefficients de la TOD sont de moins en moins corrélés. Si $m \to \infty$, on peut écrire :

$$\Gamma_{sD_m^n}[n, p] = \delta[n] \delta[p]$$ \hspace{1cm} (75)

En calculant la valeur de la corrélation décrite dans la relation (74) en origine, on obtient la valeur de la variance des coefficients de la TOD du logarithme de l’image utile :

$$\sigma_{sD_m^n}^2 = 2^{2m} \sigma_s^2$$ \hspace{1cm} (76)

Donc la variance des coefficients utiles augmente avec l’augmentation de l’indice d’itération. En conséquence dans une sous-image de détail qui correspond à un indice d’itération plus grand les détails de l’image d’entrée sont plus accentués que dans une sous-image de détail correspondant à un indice d’itération plus petit. En utilisant la relation (74) la relation (67) peut être mise sous la forme suivante :

$$\Gamma_{sD_m^n}[n, p] = \begin{cases} 2^{2m} \Gamma_s[2^m n, 2^m p] + \sigma_b^2 \delta[n] \delta[p] & k = 1, 2, 3 \\ 2^{2m} \Gamma_s[2^m n, 2^m p] + (\sigma_b^2 - 2^{2m} \gamma^2) \delta[n] \delta[p] & k = 4 \end{cases}$$ \hspace{1cm} (77)

Car pour m suffisamment grand :

$$\sigma_b^2 - 2^{2m} \gamma^2 = 0$$ \hspace{1cm} (78)

on peut constater qu’après quelques itérations le bruit contenu dans les sous-images d’approximation a été complètement éliminé. Donc, pour les TODs calculées en faisant un grand
nombre d’itérations, il suffit de filtrer seulement les sous-images de détail.

4.3 Conclusion

Dans le schéma de débruitage qui est le sujet de ce rapport on calcule la transformée en ondelettes discrète à diversité enrichie du logarithme d’une image SONAR, perturbé par un bruit additif (le logarithme du bruit de type *speckle*). Le calcul de cette transformée demande le calcul de plusieurs transformées en ondelettes discrètes, chacune basée sur l’utilisation d’une ondelette mère différente. Dans ce chapitre a été présentée l’analyse statistique de la transformée en ondelettes discrète, elle a deux paramètres : l’ondelette mère utilisée et le nombre d’itérations. Si l’image d’entrée a $2^M \times 2^M$ éléments d’image (*pixels* en anglais) alors le nombre maximal d’itérations de sa transformée en ondelettes discrète est de M. Dans ce chapitre a été analysée la transformée en ondelettes discrète d’une image, x, caractérisée par un processus aléatoire stationnaire.

Du point de vue de la composante de bruit, la caractéristique la plus importante de cette transformée est sa capacité de blanchissement. Il y a beaucoup de références bibliographiques sur la suppression du bruit blanc. On peut donc trouver une grande diversité de méthodes de débruitage pour le bruit blanc additif. C’est le motif pour lequel on propose l’utilisation de la transformée en ondelettes discrète pour le traitement des images SONAR. Mais pour obtenir la meilleure approximation d’un bruit blanc par les coefficients de la transformée en ondelettes discrète il faut calculer cette transformée en faisant le nombre maximal d’itérations, M. Ainsi on peut approximer la convergence de m vers l’infini et les séquences de coefficients de la
transformée en ondelettes discrète seront les plus proches d’une séquence de bruit blanc. La sélection de l’ondelette mère n’est pas décisive pour l’effet de blanchissement de la transformée en ondelettes discrète. Elle peut servir seulement à l’augmentation de la vitesse de convergence vers le bruit blanc. Un cas particulier très intéressant est celui où le bruit d’entrée, b, est blanc. C’est le cas du bruit de type speckle, considéré dans ce rapport. Dans ce cas-ci, les coefficients de la transformée en ondelettes discrète sont des séquences de bruit blanc à temps discret, à chaque itération. Donc, dans ce cas-ci le nombre d’itérations de la transformée en ondelettes discret n’est pas critique, et on peut utiliser une seule itération, pour augmenter la vitesse de la méthode de débruitage proposée. De plus, si M est suffisamment grand, le bruit contenu dans les sous-images d’approximation, est complètement supprimé, voir les relations (77) et (78). Donc, la sous-image d’approximation ne doit pas être filtrée.

Du point de vue de la composante utile, la caractéristique la plus importante de cette transformée est sa capacité de séparation des détails de l’image sous-marine. Avec la croissance du M, les détails de l’image utile se retrouvent de plus en plus accentués dans les sous-images de détail qui composent l’image obtenue par le calcul de la TOD. En même temps, les pixels de ces sous-images deviennent de plus en plus indépendants, voir la relation (74).

La moyenne de la TOD est donnée par la relation :

\[
E\{ D^k_{xm}[n, p]\} = \begin{cases}
0, & k = 1, 2, 3 \\
-2^m \gamma, & k = 4
\end{cases}
\]
et sa variance par la relation :

\[
E\{(D^k_{x_m[n,p]})^2\} = \begin{cases}
2^{2m} \sigma_n^2 + \sigma_b^2 & \text{si } k = 1, 2, 3 \\
2^{2m} \sigma_n^2 + \sigma_b^2 - 2^{2m} \gamma^2 & \text{si } k = 4 \end{cases}
\]

Malheureusement, le filtre utilisé dans le domaine de la transformée en ondelettes discrète, pour la suppression du bruit, qui sera présenté dans le chapitre suivant, affectera aussi les coefficients de la transformée du logarithme de l’image SONAR. C’est le motif pour lequel la question de la sélection des paramètres de la transformée en ondelettes discrète sera reprise de nouveau dans le chapitre suivant.

4.4 L’analyse statistique de la TODDEI

Comme il a déjà été montré dans la Figure 1, la TODDE réalise une diversification dans le domaine des ondelettes, par le calcul de plusieurs TODs, qui diffèrent par le choix de l’ondelette mère. Donc les conclusions de l’analyse statistique de la TOD s’appliquent à l’analyse statistique de la TODDE. La seule différence significative entre la TOD et la TODDE se manifeste au calcul de la TODDEI. Il s’agit du calcul de la moyenne des colonnes. Mais la méthode de débruitage qui représente le sujet de ce rapport suppose une opération de filtrage non linéaire entre le calcul de la TODDE et de la TODDEI. C’est le motif pour lequel l’analyse statistique de l’opération de calcul de la moyenne doit être réalisée après l’étude statistique du filtre non linéaire, qui fera l’objet du chapitre suivant.
5 L’analyse statistique du filtrage réalisé dans le domaine de la TODDE

Le but du filtrage réalisé dans le domaine de la TODDE est de diminuer la puissance du bruit \(TODDE\{\log(b(x,y))\} \) sans affecter "l’image originale ", \(TODDE\{\log(i_0(x,y))\} \). Dans la suite on utilise les notations :

\[
b_r(x,y) = TOD_r\{\log(b(x,y))\}, s_{ar}(x,y) = TOD_r\{\log(i_r(x,y))\}, s_r(x,y) = TOD_r\{\log(i_0(x,y))\}
\]

(79)

où l’indice \(r \) spécifie l’ondelette mère utilisée pour le calcul de la transformée en ondelettes discrète correspondante. A la sortie du filtre est obtenue l’image \(\hat{s}_r(x,y) \), l’estimée de l’image \(s_r(x,y) \). Il y a une grande diversité de solutions pour ce filtrage. On peut utiliser des filtres linéaires invariants en espace, des filtres linéaires variants en espace ou des filtres non-linéaires. Le but est d’optimiser une certaine fonction de coût, liée de l’erreur d’approximation de l’image \(s_r(x,y) \) par l’image \(\hat{s}_r(x,y) \).

Parmi les fonctions de coût fréquemment optimisées sont :

- l’erreur quadratique moyenne d’approximation,
- l’erreur Min-Max d’approximation,
- la probabilité a posteriori d’obtenir l’image \(s_r(x,y) \) à la sortie du filtre quand à son entrée il y a l’image \(s_{ar}(x,y) \).

Les deux premiers critères doivent être minimisés tandis que le troisième doit être maximisé.

Dans ce chapitre sont présentées et analysées plusieurs solutions pour le filtrage dans le domaine de la TOD. Pour pouvoir les comparer on présente aussi des simulations. Ces
simulations sont faites en utilisant comme image originale l’image Lena. Celle-ci est perturbée par bruit blanc additif de différentes variances. On classifie les différents résultats de simulation en comparant les rapports signal à bruit de sommet (\textit{pick signal to noise ratio}) obtenus en appliquant différentes méthodes de filtrage dans le domaine des ondelettes pour la même valeur de variance du bruit.

L’image Lena a 256x256 pixels. Au commencement sont calculées les TODs correspondant aux neuf ondelettes mères de Daubechies ayant un nombre de moments nuls de : 2,3,...,10. On applique la méthode de filtrage spécifique à chacune de ces transformées. On calcule les TODs correspondantes. Pour chacune on détermine le rapport signal à bruit de sommet spécifique. En moyennant arithmétiquement les résultats correspondant à chaque TOD on obtient le résultat de la TODDE. Le rapport signal à bruit de sommet obtenu est aussi enregistré. Ainsi on peut comparer l’effet de l’association de la méthode de filtrage étudiée à une certaine ondelette mère avec l’effet de l’association de la méthode de filtrage étudiée et la TODDE.

5.1 L’utilisation des filtres linéaires invariants en espace

C’est la solution la plus facile qui a les performances les plus modestes. Ces systèmes ont quelques désavantages :

- l’augmentation du rapport signal à bruit réalisé par un filtre linéaire et invariant est réduite, [IA199]. C’est le motif pour lequel ce type de filtres peut être utilisé seulement pour le traitement des signaux dont le rapport signal à bruit est fort.

- Du à leur caractéristique de phase, ces filtres ajoutent des retards au signal traité, qui se
traduisent par des distorsions.

5.2 L’utilisation des filtres linéaires variants en espace

L’utilisation de ce type de filtres a comme but la minimisation de l’erreur quadratique moyenne d’approximation.

5.2.1 L’utilisation des filtres de Wiener

Parmi les filtres classiques, utilisés contre le bruit de type speckle, on peut trouver des exemples de systèmes construits pour optimiser l’une des fonctions de coût présentées plus haut. Le filtre de Kuan et ses cas particuliers, les filtres de Lee et de Nathan sont construits pour minimiser l’erreur quadratique moyenne d’approximation, [Beu02],[GJ97]. Le filtre Gamma est un filtre de probabilité a posteriori maximale, MAP, [GJ97].

Les systèmes qui minimisent l’erreur quadratique moyenne sont les filtres de Wiener. Pour le signal à traiter :

$$s_{ar}(x, y) = s_r(x, y) + b_r(x, y)$$ (80)

l’estimation donnée par le filtre de Wiener, de réponse impulsionnelle $h_r(x, y)$, est :

$$\hat{s}_r(x, y) = s_{ar}(x, y) * h_r(x, y)$$ (81)

La réponse impulsionnelle, $h_r(x, y)$, est choisie telle que l’estimation $\hat{s}_r(x, y)$ fait la meilleure approximation d’erreur quadratique moyenne de l’image $s_r(x, y)$. La minimisation de l’erreur quadratique moyenne,

$$E\{[\hat{s}_r(x, y) - s_r(x, y)]^2\},$$

est obtenue quand les coefficients de la réponse impulsionnelle du filtre représentent les solutions du système d’équations :

37
\[R_{sa} \cdot H = r \] (82)

Le premier facteur du membre gauche de la dernière relation est la matrice de Toeplitz de corrélation du signal acquis, le deuxième facteur du membre gauche représente le vecteur des coefficients de la réponse impulsionnelle du filtre de Wiener et le membre droit représente le vecteur d'inter corrélation entre le signal acquis et le signal cherché, \(s_r(x,y) \). Généralement on fait l'hypothèse :

\(H_1 \) : les signaux \(s_r(x,y) \) et \(b_r(x,y) \) ne sont pas corrélés.

Comme il a été montré dans le chapitre antérieur cette hypothèse est valable pour le problème considéré dans cette étude.

Dans ce cas-ci, les éléments du vecteur \(r \) sont les valeurs de la corrélation du signal \(s_r(x,y) \).

Le filtre de Wiener d’ordre zéro

Pour simplifier encore le calcul nécessaire pour résoudre le système (82), deux autres hypothèses peuvent être faites :

\(H_2 \) : le bruit \(b_r(x,y) \) est un processus aléatoire de type bruit blanc de moyenne nulle et de variance \(\sigma_b^2 \),

\(H_3 \) : l’image utile \(s_r(x,y) \) est un processus aléatoire de type bruit blanc de moyenne nulle et de variance \(\sigma^2 \).

Comme il a été montré dans le chapitre antérieur, l’hypothèse \(H_2 \) est valable pour le pro-
blème considéré dans cette étude. L’hypothèse H_3 est valable seulement pour les sous-images obtenues après quelques itérations de la TOD. Ainsi l’équation (82) peut être écrite sous la forme :

$$\begin{bmatrix}
\sigma^2 + \sigma_b^2 & 0 & \ldots & 0 \\
0 & \sigma^2 + \sigma_b^2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma^2 + \sigma_b^2
\end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_p \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$ \hspace{1cm} (83)

On constate, en analysant la solution du dernier système d’équations, qu’à l’exception du premier coefficient du filtre de Wiener, tous les autres ont des valeurs nulles. Donc la réponse impulsionnelle du filtre de Wiener est dans ce cas-ci :

$$h[x, y] = h_1 \delta[x, y] = \frac{\sigma^2}{\sigma^2 + \sigma_b^2} \delta[x, y]$$ \hspace{1cm} (84)

C’est le filtre de Kuan. Pour utiliser ce filtre il faut estimer les variances de l’image utile et de l’image de bruit. En général ces quantités, surtout σ^2, varient en espace. C’est le motif pour lequel on préfère estimer localement ces quantités. Pratiquement le filtrage de Wiener est réalisé pour chacun des pixels (x_0, y_0). On prend une fenêtre, par exemple carrée, de centre (x_0, y_0) et de dimension $2P+1$, $F_P(x_0, y_0)$ et on estime les deux variances $\hat{\sigma}^2(x_0, y_0)$ et $\hat{\sigma}_b^2(x_0, y_0)$. Pour le cas de la TOD, la variance du bruit peut être estimée en utilisant la sous-image de détails diagonaux obtenus après la première itération, D_1^3, en divisant la médiane de cette sous-image par 0.6745 :

$$\hat{\sigma}_b^2 = \frac{\text{median}(|s_{ar}(x, y)|)}{0.6745} \quad (x, y) \in D_1^3$$ \hspace{1cm} (85)
Pour estimer la variance locale de l’image utile il faut calculer sa moyenne :

\[
\hat{m}_{sr}[n, p] = \frac{1}{(2P + 1)^2} \sum_{(k,l)\in F_{n,p}} s_{ar}[k, l]
\]
(86)

et la variance de l’image acquise contenue dans la fenêtre :

\[
\hat{\sigma}_{sr}^2[n, p] = \frac{1}{(2p + 1)^2} \sum_{(k,l)\in F_{n,p}} (s_{ar}[k, l] - \hat{m}_{sr}[n, p])^2
\]
(87)

En utilisant ces valeurs, la variance de l’image utile est donnée par :

\[
\hat{\sigma}^2[n, p] = \max(0, \hat{\sigma}_{sr}^2[n, p] - \hat{\sigma}_b^2)
\]
(88)

Puis on détermine la réponse impulsionnelle du filtre pour la fenêtre considérée :

\[
\hat{h}_{n,p}[x, y] = \frac{\hat{\sigma}^2[n, p]}{\hat{\sigma}^2[n, p] + \hat{\sigma}_b^2} \delta[x, y]
\]
(89)

Puis on filtre l’image acquise, dans la fenêtre considérée. Finalement, on modifie le centre de la fenêtre d’analyse, en passant au pixel suivant et on reprend les étapes déjà décrites. Ainsi on réalise un filtrage adaptatif.

Pour ce cas-ci le filtrage se réduit à la multiplication de l’intensité de chaque des pixels par le premier facteur du membre droit de l’équation (89). Pour les valeurs importantes du \(\hat{\sigma}^2\), quand \(\hat{\sigma}^2 \gg \hat{\sigma}_b^2\), ce facteur est très proche de 1, donc la contribution du filtre de Wiener à l’augmentation de l’erreur quadratique moyenne d’approximation est négligeable. Ce facteur est très petit si \(\hat{\sigma}^2 \ll \hat{\sigma}_b^2\). Dans ce cas-ci se manifeste la plus forte influence de
Alexandru ISAR, Sorin MOGA et al., LUSSI-TR-2004-4-FR

l'imprécision d'estimation locale de la variance de l'image \(s_{ar} \) sur l'erreur quadratique moyenne d'approximation réalisée par le filtre de Wiener. La dernière condition est satisfaite dans la grande majorité des fenêtres d'analyse si le rapport signal à bruit de l'image \(s_{ar}(x, y) \) est faible. Donc les méthodes de débruitage basées sur l'utilisation du filtre de Wiener dans le domaine de la TOD ne peuvent pas supprimer complètement le bruit quand le rapport signal à bruit de l'image acquise est faible. Il faut observer que la relation (88) introduit des non-linéarités. C'est le motif pour lequel le filtre de Wiener, présenté dans ce paragraphe, n'est pas parfaitement linéaire.

L'expérience associée à ce filtre a conduit aux résultats présentés dans le tableau Tab. 1. Le tableau a été obtenu en sélectionnant chaque fois un nombre de six itérations pour les TODs. En analysant les images associées à chaque ligne du tableau on constate que pour les valeurs de \(\sigma_b \) supérieures à 20 le bruit n'est pas complètement supprimé. Dans la figure Fig. 10 sont présentées les images obtenues pour la dernière ligne du tableau TAB. 1.

<table>
<thead>
<tr>
<th>(\sigma_b)</th>
<th>Entrée</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
<th>(S_8)</th>
<th>(S_9)</th>
<th>TODDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28.138</td>
<td>32.184</td>
<td>32.366</td>
<td>32.531</td>
<td>32.598</td>
<td>32.585</td>
<td>32.541</td>
<td>32.522</td>
<td>32.467</td>
<td>32.536</td>
<td>32.875</td>
</tr>
</tbody>
</table>

Tab. 1 – Les rapports signal à bruit de sommet obtenus en utilisant le filtre de Wiener d'ordre 0 dans le domaine des TODs correspondantes aux ondelettes mères à support compact de Daubechies à k moments nuls (correspondant à la sortie k-1) et à la TODDE.
FIG. 10 – Un exemple d’utilisation du filtre de Wiener d’ordre zéro dans le domaine de la TODDE : en haut-gauche l’image utile, -haut-droite : image bruitée -bas-gauche : image résultée -bas-droite : image d’erreur
%Imsin_zgad_wiener0s.m;

it=6;

%Les dimensions de l'image à traiter;

a=256;

%Les dimensions des blocs intermédiaires: a-pour les blocs extérieurs;

%b pour les blocs intérieurs;

b=a./2;

n=a./4;

L=log2(b)-it;

%La génération de l'image utile;

sigi=readimage('Lenna');

%La génération de l'image de bruit;

;zzi=35.*randn(a);

% L'image bruitée;

xs1=zzi+sigi;

%Le calcul du rapport signal à bruit de sommet à l'entrée;

einit=sum(sum((sigi-xs1).*(sigi-xs1)))./(a.*a);

PSNRinit=20.*log10(a./sqrt(einit))

%Représentations graphiques initiales;
figure(1);
autoimage(sigi);
title('image utile');
figure(2);
autoimage(xs1);
title('image bruitée');
rezuf=zeros(a);
for m=4:2:20;
 f=makeonfilter('Daubechies',m);
end

L'enrichissement dans le domaine des ondelettes;
wc2=fwt2_po(xs1,L,f);

wcd2d=wc2(b./2+1:b,b./2+1:b);

sigma2=(median(median(abs(wcd2d))))./0.674

5;

Le filtrage de Wiener;
for i=2:a-1
 for j=2:a-1
 moyenne=mean(mean(wc2(i-1:i+1,j-1:j+1)));
 end
end
variimacq=(1./9).*sum(sum((wc2(i-1:i+1,j-1:j+1).^2));
%variimaut=variimacq-moyenne.^2;
sigaut=sqrt(abs(variimaut));
%wc2n(i,j)=wc2(i,j).*(sigaut.^2./(sigaut.^2+%
sigma2.^2));
end
end
wc2n(1,1:a)=wc2(1,1:a);
wc2n(1:a,1)=wc2(1:a,1);
wc2n(a,1:a)=wc2(a,1:a);
wc2n(1:a,a)=wc2(1:a,a);
% L’inversion de la TOD courante;
%rez=iwt2_po(wc2n,L,f);
%Le calcul du rapport signal à bruit de sommet pour la TOD courante;
e=sum(sum((sigi-rez).*(sigi-rez)))./(a.*a);
PSNRinterm=20.*log10(a./sqrt(e))
rezuf=rezuf+rez;
end;
% Le calcul de la TODDE;
rezufina=rezuf./9;

\%Le calcul du rapport signal à bruit de
sommet de la TÔDDE;
e=sum(sum((sigi-rezufina).*sigirezufina))./(a.*a);
PSNRO=20.*log10(a./sqrt(e));
\%Représentations graphiques finales;
figure(3);
autoimage(rezufina);
title('resultat');
figure(4);
autoimage(sigi-rezufina);
title('erreur');

Filtre de Wiener d’ordre supérieur

Malheureusement les hypothèses H_1, H_2 et H_3 ne sont pas complètement vérifiées dans le cas étudié dans ce rapport. Surtout l’image utile n’est pas exactement un processus aléatoire de type bruit blanc.

Dans la littérature dédiée à la déspecklisation on peut trouver une variété de modèles statistiques pour l’image originale. Par exemple, l’un des filtres classiques de déspecklisation, le filtre de Frost, est un filtre de Wiener adaptatif, construit sur la base d’un modèle exponentiel auto-régressif de l’image originale. Sa réponse impulsionnelle, dans chaque fenêtre, $F_{p,n}$, a la
formule:

\[h_r(x, y) = \exp[-K C_{sa_r}(x_0, y_0) \sqrt{(x - x_0)^2 + (y - y_0)^2}] \] \hspace{1cm} (90)

où:

\[C_{sa_r}(x_0, y_0) = \frac{\sigma^2_{sa_r}}{m_{sa_r}} \] \hspace{1cm} (91)

et K est une constante appelée le paramètre du filtre, [GJ97]. Cette réponse impulsionnelle correspond à un certain modèle local de l’auto-corrélation de l’image originale. Ce modèle impose les expressions des matrices \(R_s \) et \(r \) de l’équation (82).

Dans [ZNW00a] la modélisation de la fonction de corrélation de la TOD d’une image réelle est proposée par la formule suivante :

\[\Gamma_s[k, l] = \begin{cases}
 r_{0,0} \rho^{|k|+|l|} , & (k, l) \in F_{n,p} \\
 0 & |k| > nP \text{ ou } |l| > pP
\end{cases} \] \hspace{1cm} (92)

Ce modèle, pour \(\rho < 1 \), montre que l’influence du pixel central sur les autres pixels de la fenêtre diminue quand la distance entre ces pixels augmente. La vitesse de décroissance dépend de la valeur du \(\rho \). La valeur \(r_{0,0} \) est donnée par \(\hat{\sigma}^2[n, p] \).

Par exemple, pour \(P \) de valeur 1, les indices des pixels de chaque fenêtre d’analyse peuvent être groupés dans une matrice qui a la forme suivante :

\[\begin{bmatrix}
 (-1, 1) & (0, 1) & (1, 1) \\
 (-1, 0) & (0, 0) & (1, 0) \\
 (-1, -1) & (0, -1) & (1, -1)
\end{bmatrix} \] \hspace{1cm} (93)

L’expression de la réponse impulsionnelle du filtre de Wiener spécifique pour chaque fenêtre d’analyse semble avoir des similitudes très fortes avec l’expression de la relation (90).
Donc dans [ZNW00a] l’hypothèse H_3 a été relaxée. Le modèle proposé est isotrope. La solution de l’équation (82) s’écrit dans ce cas-ci sous la forme :

\[
\begin{pmatrix}
h(1, 1) \\
h(1, 0) \\
h(0, 1) \\
h(0, 0)
\end{pmatrix} =
\begin{bmatrix}
r_{00} + \sigma_b^2 & r_{00}\rho & r_{00}\rho & r_{00}\rho^2 \\
r_{00}\rho & r_{00} + \sigma_b^2 & r_{00}\rho & r_{00}\rho^2 \\
r_{00}\rho & r_{00}\rho & r_{00} + \sigma_b^2 & r_{00}\rho \\
r_{00}\rho^2 & r_{00}\rho & r_{00}\rho & r_{00}
\end{bmatrix}
\begin{pmatrix}
r_{00}\rho^2 \\
r_{00}\rho \\
r_{00}\rho \\
r_{00}
\end{pmatrix}
\]

(94)

Tenant compte de la diversité spatiale des images réelles ce modèle peut être enrichi, [ZNW00b]. Malheureusement ce nouveau modèle n’apporte pas des augmentations très importantes des performances de la méthode de débruitage qui l’utilise, [ZNW00b]

L’expérience associée à ce filtre a conduit aux résultats présentés dans le Tableau 2. Le tableau a été obtenu en sélectionnant chaque fois un nombre de six itérations pour les TODs. En analysant les images associées à chaque ligne du tableau on constate que pour les valeurs de σ_b supérieures à 20 le bruit n’est pas complètement supprimé dans l’image de résultat. Dans la Figure 11 les images obtenues pour la dernière ligne du premier sous-tableau sont présentées.

<table>
<thead>
<tr>
<th>σ_b</th>
<th>Rapport signal à bruit de sommet ($\rho = 0.7$)</th>
<th>σ_b</th>
<th>Rapport signal à bruit de sommet ($\rho = 0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Entrée</td>
<td>Sortie1</td>
<td>Sortie2</td>
</tr>
<tr>
<td>20</td>
<td>22.153</td>
<td>27.039</td>
<td>27.144</td>
</tr>
</tbody>
</table>

| σ_b | Entrée | Sortie1 | Sortie2 | Sortie3 | Sortie4 | S_5 | S_6 | S_7 | S_8 | S_9 | TODDE |
|-----------|---|-----------|---|
| 10 | 28.177 | 32.004 | 32.178 | 32.268 | 32.252 | 32.332 | 32.266 | 32.214 | 32.238 | 32.256 | 32.772 |
| 20 | 22.147 | 26.941 | 27.095 | 27.162 | 27.242 | 27.308 | 27.249 | 27.321 | 27.296 | 27.223 | 27.562 |
| 35 | 17.279 | 22.799 | 22.799 | 22.798 | 22.792 | 22.705 | 22.695 | 22.684 | 22.753 | 23.004 |

En analysant le tableau on peut faire les observations suivantes.

O1. Pour σ_b de valeur petite, $\sigma_b \leq 15$, les meilleures valeurs pour le rapport signal à bruit de sommet de sortie ont été obtenues pour le cas $\rho = 0.5$. Pour $\rho \rightarrow 0$, l’auto-corrélation
 занятие 5.2.1.2. Les rapports signal à bruit de sommet obtenus en utilisant le filtre de Wiener d’ordre 2 dans le domaine des TODs correspondantes aux ondelettes mères à support compact de Daubchies à k moments nuls (correspondant à la sortie k-1) et à la TODDE.

tend vers la distribution de Dirac, qui caractérise le processus aléatoire de type bruit blanc.

Le cas le plus proche, présenté dans le tableau est celui dans lequel ρ = 0.5. C’est le motif pour lequel les résultats présentés dans le deuxième sous-tableau du Tableau 2 sont les plus ressemblants aux résultats présentés dans le Tableau 1 (où le modèle de l’image à traiter était un processus aléatoire de type bruit blanc).

Pour σb de valeur intermédiaire, 15 < σb ≤ 30, les meilleures valeurs pour le rapport signal à bruit de sommet de sortie ont été obtenues pour le cas ρ = 0.7.

Pour σb de valeur grande, 35 ≤ σb, les meilleures valeurs pour le rapport signal à bruit de sommet de sortie ont été obtenues pour le cas ρ = 0.9. Donc la valeur du ρ doit être choisie en accord avec la valeur du σb.

O2. En comparant les images d’erreur présentées dans le coin inférieur-droit dans les Figures 10 et 11, on peut observer qu’avec l’augmentation de ρ, la capacité de suppression du bruit du filtre de Wiener augmente mais qu’en même temps les distorsions des contours de l’image à traiter augmentent elles aussi. Dans l’image d’erreur de la Figure 11 les contours de
l'image à traiter sont plus visibles que dans l'image correspondante de la Figure 10.

O3. Dans chaque sous-tableau, pour chaque valeur du rapport signal à bruit de sommet d'entrée il y a une meilleure TOD, qui conduit au plus grand rapport signal à bruit de sommet de sortie. Celle-ci correspond à une certaine ondelette mère. La répartition des meilleures ondelettes mères est la plus homogène à travers les valeurs de σ_b pour le cas correspondant à $\rho = 0.9$. Dans ce cas-ci on peut observer l'effet le plus visible de l'application de la TODDE par rapport à la TOD qui conduit au meilleur rapport signal à bruit de sommet à la sortie.

Le programme utilisé pour ces simulations est le suivant :

```matlab
%Imsin_zgd_wiener2.m;

it=6;

%Les dimensions de l'image à traiter;

a=256;

%Les dimensions des blocs intermédiaires: a-pour les blocs extérieurs;
%b pour les blocs intérieurs;

b=a./2;

n=a./4;

L=log2(b)-it;

%La génération de l'image utile;

sig=readimage('Lenna');

sigi=sig(1:a, 1:a);
```
Fig. 11 – Un exemple d’utilisation du filtre de Wiener d’ordre deux dans le domaine de la TODDE : haut-gauche : image utile, haut-droite : image bruitée, bas-gauche : image résultée, bas-droite : image d’erreur
%La génération de l’image de bruit;

xzi=35.*randn(a);

% L’image bruitée;

xs1=xzi+sigi;

%Le calcul du rapport signal à bruit de

sommet à l’entrée;

einit=sum(sum((sigi-xs1).*(sigi-xs1))./(a.*a);

PSNRinit=20.*log10(a./sqrt(einit))

%Représentations graphiques initiales;

figure(1);
autoimage(sigi);
title('image utile');
figure(2);
autoimage(xs1);
title('image bruitée');
rezuf=zeros(a);
for m=4:2:20;
f=makeonfilter('Daubechies',m);

%L’enrichissement dans le domaine des
ondelettes;
wc2=fwt2_po(xs1,L,f);

52
wcd2d=wc2(b./2+1:b,b./2+1:b);

% sigma2 représente l'écart type du bruit;
sigma2=(median(median(abs(wcd2d))))./0.674
5;

% Le filtrage de Wiener;
for i=2:a-1
 for j=2:a-1
 moyenne=mean(mean(wc2(i-1:i+1,j-1:j+1)));
 variimacq=(1./9).*sum(sum(wc2(i-1:i+1,j-1:j+1).^2));
 variimaut=variimacq-moyenne.^2;
 sigma2=sqrt(abs(variimaut));
 % La génération de la matrice de Toeplitz,
 toep, à partir de la fonction
d'auto-corrélation;
 % on prend pour ro la valeur 0.7 et pour
 r00 la valeur variimaut;
 ro=0.7;
 r00=variimaut;
 corel=[r00+sigma2.^2 r00.*ro r00.*ro
r00.*ro.^2];
toop=toeplitz(corel);

% Le calcul des coefficients du filtre de Wiener;
% La matrice d'inter-corrélation;
col=[r00.*ro.^2 r00.*ro r00.*ro r00];
tercor=col';
coef=inv(toop)*tercor;

h2=[coef(4) coef(3)];
h1=[coef(2) coef(1)];
h=[h2,h1];

sortie=conv2(wc2(i-1:i+1,j-1:j+1),h);

wc2n(i,j)=sortie(2,2);

end

end

wc2n(1,1:a)=wc2(1,1:a);
wc2n(1:a,1)=wc2(1:a,1);
wc2n(a,1:a)=wc2(a,1:a);
wc2n(1:a,a)=wc2(1:a,a);

% L'inversion de la T0D courante;
rez=iwt2_po(wc2n,L,f);
Le calcul du rapport signal à bruit de
sommet pour la TOD courante;
e=sum(sum((sigi-rez).* (sigi-rez)))./(a.*a);
PSNRinterm=20.*log10(a./sqrt(e))
rezuf=rezuf+rez;
end;
% Le calcul de la TODDE;
rezufina=rezuf./9;
% Le calcul du rapport signal à bruit de
sommet de la TODDE;
e=sum(sum((sigi-rezufina).* (sigirezufina)))./(a.*a);
PSNRO=20.*log10(a./sqrt(e))
% Représentations graphiques finales;
figure(3);
autoimage(rezufina);
title('resultat');
figure(4);
autoimage(sigi-rezufina);
title('erreure');

Les différences par rapport à la première expérience ont été marquées par des caractères
Comme il a été précédemment montré, la principale difficulté rencontrée à l’utilisation du filtre de Wiener dans le domaine de la TOD est le manque de précision pour l’estimation de la variance de l’image à traiter, pour des images acquises de faible rapport signal à bruit. En effet dans ce cas-ci, la valeur $\hat{\sigma}_p^2$ est importante et $\hat{\sigma}^2$ peut prendre des valeurs très différentes de σ^2. En conclusion on peut affirmer que cette méthode de débruitage ne marche pas pour des images très bruitées. Malheureusement, on trouve souvent dans la pratique des images SAR ou SONAR dont le rapport signal à bruit est suffisamment faible pour ne pas pouvoir appliquer cette méthode de débruitage, [GSB97],[IB03].

La principale déficience des modèles présentés jusqu’à présent est qu’ils ne prennent pas en compte l’échelle. Il y a une certaine corrélation entre les coefficients de la TOD calculés à différentes échelles. En fait chaque coefficient à une certaine échelle a des parents à une échelle ultérieure et des enfants à une échelle antérieure. Comme il est montré dans la relation (52) de ce rapport, la corrélation d’un certain coefficient de la TOD dépend de :

- sa position géométrique dans le cadre d’une certaine sous-image, dépendance envisagée à l’aide des variables n et p, (De1),
- l’échelle, en évidence à l’aide de la variable m, (De2),
- le type de la sous-image dont il fait partie, par la variable k, (De3),
- l’image acquise, par l’intermédiaire de sa densité spectrale de puissance, γ, (De4),
- l’ondelette mère utilisée, (De5).

Les modèles présentés jusqu’à présent prennent en compte les dépendances De1 (par le
traitement pixel après pixel et par les estimations locales des variances) et De4 (par des
modèles généraux) mais ne prennent pas en compte les dépendances De2, De3 et De5. L’utilisa-
ion de la TODDE rend les dépendances De3 et De5 très faibles. Il nous reste à inclure la
dépendance De2, qui exprime la corrélation à travers les échelles, dans une nouvelle méthode
de débruitage, pour optimiser la déspecklisation.

5.3 La maximisation de la probabilité a posteriori

Pour le commencement on fait l’hypothèse :

H_4 : les coefficients de chaque TOD sont indépendants par rapport à l’échelle.

Dans ce cas-ci l’estimation de l’image $s_r(x, y)$ en partant de l’image $s_{ar}(x, y)$:

$$s_{ar}(x, y) = s_r(x, y) + b_r(x, y)$$ \hspace{1cm} (95)

peut se faire par la maximisation de la probabilité a posteriori $p_{as_r/s_r}(s_{ar}/s_r)$ aussi :

$$s_r = \arg\max_{s_r} \left\{ p_{as_r}(s_{ar}/s_r)p_{sr(s_r)} \right\}$$ \hspace{1cm} (96)

[FBB01],[SS02b]. En utilisant la formule du Bayes, la dernière relation peut être écrite
sous la forme :

$$s_r = \arg\max \{ p_{as_r}(s_{ar}/s_r)p_{sr}(s_r) \} =$$

$$= \arg\max \{ p_{b_r}(s_{ar} - s_r)p_{sr}(s_r) \}$$ \hspace{1cm} (97)

L’estimateur défini dans la dernière relation s’appelle estimateur maximum a posteriori,
MAP. Pour calculer cet estimateur il faut connaître les densités de probabilité de l'image utile, \(p_{sr}(s_r) \) et de l'image de bruit, \(p_{br}(b_r) \). La relation (97) peut être réécrite sous la forme :

\[
\hat{s}_r = \arg \max \{\ln(p_{br}(s_{ar} - s_r) + \ln(p_{sr}(s_r)))\} \tag{98}
\]

parce que la fonction logarithmique est monotone. Dans la suite on utilise la notation \(f(s_r) = \ln(p_{sr}(s_r)) \). Si on reprend l’hypothèse \(H_2 \) on peut considérer une densité de probabilité Gaussienne pour le bruit :

\[
p_{br}(b_r) = \frac{1}{\sqrt{2\pi\sigma_b^2}} e^{-\frac{b_r^2}{2\sigma_b^2}} \tag{99}
\]

et la condition (98) peut être écrite sous la forme :

\[
\hat{s}_r = \arg \max \{-\frac{(s_{ar} - s_r)^2}{2\sigma_b^2} + f(s_r)\} \tag{100}
\]

La valeur maximale de l’argument est atteinte dans le point où sa dérivée s’annule. La condition (100) est donc équivalente à la condition suivante :

\[
\frac{s_{ar} - \hat{s}_r}{\sigma_b^2} + f'(\hat{s}_r) = 0 \tag{101}
\]

Si on reprend l’hypothèse \(H_3 \) aussi, on peut considérer une densité de probabilité Gaussienne pour l’image \(s_r \) :

\[
p_{sr}(s_r) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{s_r^2}{2\sigma^2}} \tag{102}
\]
et l’expression de la fonction f est :

$$f(s_r) = \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \right) - \frac{s_r^2}{2\sigma^2} \quad (103)$$

Dans ce cas-ci l’hypothèse H_1 est vérifiée implicitement. Donc l’équation (101) prend la forme :

$$\frac{s_{ar} - \hat{s}_r}{\sigma^2} - \frac{\hat{s}_r}{\sigma^2} = 0 \quad (104)$$

et l’estimation de l’image s_r peut être faite à l’aide de la relation :

$$\hat{s}_r = \frac{\sigma^2}{\sigma^2 + \sigma_b^2} s_{ar} \quad (105)$$

Le filtre MAP dans ce cas-ci est identique au filtre de Wiener obtenu en utilisant les hypothèses H_1, H_2 et H_3, décrit dans la relation (89) et appelé filtre de Wiener d’ordre zéro. Bien sûr, les variances de l’image utile et du bruit doivent être estimées de nouveau. Ce type de filtre MAP s’appelle marginal parce qu’on a utilisé pour sa dérivation l’hypothèse H_4. C’est le motif pour lequel on a utilisé des densités de probabilité unidimensionnelles dans les relations (99) et (102).

Très souvent on considère un modèle basé sur la loi de densité de probabilité de Laplace pour la TOD d’une image réelle, [SS02b],[SS02a]. Dans ce cas-ci la densité de probabilité de l’image s_r est donnée par la relation :

$$p_{s_r}(s_r) = \frac{1}{\sqrt{2\sigma}} e^{-\sqrt{2}\frac{|s_r|}{\sigma}} \quad (106)$$

et la fonction f a l’expression :

$$f(s_r) = \ln \left(\frac{1}{\sqrt{2\sigma}} \right) - \frac{\sqrt{2}|s_r|}{\sigma} \quad (107)$$
L'équation (101) prend la forme :

$$\frac{s_{ar} - \hat{s}_r}{\sigma_b^2} - \frac{\sqrt{2}}{\sigma} \text{sgn}(\hat{s}_r) = 0$$ \hfill (108)

dont la solution est :

$$\hat{s}_r = \text{sgn}(s_{ar}) \left(\frac{|s_{ar}| - \sqrt{2} \sigma_b^2}{\sigma} \right)$$ \hfill (109)

où on a utilisé l'opérateur de seuillage :

$$(g)_+ = \begin{cases} g & \text{pour } g > 0 \\ 0 & \text{sinon} \end{cases}$$

En utilisant la notation :

$$\text{soft}(g, \tau) = \text{sgn}(g)(|g|_\tau)_+$$ \hfill (110)

la relation (109) peut être re-écrite sous la forme suivante :

$$\hat{s}_r = \text{soft} \left(s_{ar}, \frac{\sqrt{2} \sigma_b^2}{\sigma} \right)$$ \hfill (111)

Ce système est le célèbre filtre soft-thresholding, proposé par Donoho, dans son premier article sur le débruitage à l'aide de la TOD, [DJ94] qui utilise un seuil de valeur $\frac{\sqrt{2} \sigma^2}{\sigma}$.

5.3.1 Le filtre de type soft-thresholding

C'est un système non linéaire. Ce filtre optimise l'erreur Min-Max d'approximation pour une classe très large d'images originales de différentes régularités, quand la valeur de seuil τ est correctement choisie. Si le seuil est choisi en accord avec la valeur de la variance de l'image de bruit alors ce filtre est adaptatif, [DJ94]. La variance de l'image de bruit peut être
calculée en utilisant la relation (85). La constante de proportionnalité prend différentes valeurs correspondant à différentes fonctions de coût. Dans le cas de la minimisation de l’erreur Min-Max d’approximation, cette constante est égale à $\sqrt{2\ln N}$ où N représente le nombre des pixels de l’image acquise. Une autre valeur, spécifique pour le critère qui demande la minimisation de la puissance de bruit à la sortie, est 3 (tenant compte de la règle de trois sigma, spécifique pour les lois Gaussiennes).

Dans la suite est présentée une expérience associée au filtre de type soft-thresholding. Le critère d’optimisation (étant dans le cas de ce chapitre la maximisation du rapport signal à bruit de sommet de sortie) demande une autre valeur pour la constante de proportionnalité entre la valeur du seuil du filtre soft-thresholding et l’écart type du bruit. Dans les simulations qui suivent, la valeur de cette constante sera choisie telle que le rapport signal à bruit de sommet associé à chaque TOD soit maximal. Les résultats obtenus sont présentés dans le tableau 3. Le tableau a été obtenu en sélectionnant chaque fois un nombre de six itérations pour les TODs. Dans la Figure 12 les images obtenues pour la dernière ligne du tableau sont présentées.

En analysant le tableau on peut faire les observations suivantes.

01. L’estimation de σ_b par $\hat{\sigma}_b$, basée sur la formule (85) est de bonne qualité pour toutes les valeurs de σ_b et pour toutes les TODs. La variance de cette estimation augmente avec l’augmentation de σ_b.

02. La valeur de la constante de proportionnalité augmente avec l’augmentation de σ_b entre la valeur 1.12 (obtenue pour $\sigma_b \leq 15$) et 1.52 (obtenue pour $\sigma_b \neq 35$). Donc la valeur
FIG. 12 – Un exemple d’utilisation du filtre soft-thresholding dans le domaine de la TODDE :
-haut-gauche : image utile, -haut-droite : image bruitée, -bas-gauche : image résultée, -bas-
droite : image d’erreur
<table>
<thead>
<tr>
<th>σ_b</th>
<th>Entrée</th>
<th>Sortie1</th>
<th>Sortie2</th>
<th>Sortie3</th>
<th>Sortie4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>TODDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>22.146</td>
<td>26.993</td>
<td>27.098</td>
<td>27.169</td>
<td>27.218</td>
<td>27.168</td>
<td>27.115</td>
<td>27.062</td>
<td>27.083</td>
<td>27.068</td>
<td>28.139</td>
</tr>
</tbody>
</table>

Tab. 3 – Tableau 5.3.1. Les rapports signal à bruit de sommet obtenus en utilisant le filtre soft-thresholding dans le domaine des TODs correspondantes aux ondelettes mères à support compact de Daubechies à k moments nuls (correspondant à la sortie k-1) et à la TODDE.

du seuil du filtre *soft-thresholding* doit être choisie en accord avec la valeur du rapport signal à bruit de sommet d’entrée. La variance de la constante de proportionnalité par rapport aux TODs augmente-t-elle aussi avec l’augmentation de σ_b. C’est le motif pour lequel la supériorité de la TODDE par rapport à la meilleure TOD est plus évidente dans le cas du filtre *soft-thresholding* que dans les cas des filtres de Wiener. On constate aussi que pratiquement la meilleure ondelette mère est l’ondelette de Daubechies à cinq moments nuls. Mais les résultats obtenus en utilisant cette ondelette mère sont chaque fois inférieurs aux résultats obtenus en utilisant la TODDE (à une valeur de presque 1 dB).

O3. Les valeurs des rapports signal à bruit de sommet de sortie obtenues en utilisant le filtre *soft-thresholding* sont inférieures aux valeurs des rapports signal à bruit de sortie de sommet obtenues en utilisant les filtres de Wiener pour les rapports signal à bruit de sommet d’entrée petits ($\sigma_b \leq 10$) et supérieures pour les autres valeurs du rapport signal à bruit de sommet d’entrée ($\sigma_b \neq 10$). Tenant compte du fait que la perturbation des images SONAR par le bruit de *speckle* est forte on peut dire que pour ce type d’images l’utilisation du filtre...
soft-thresholding est une meilleure solution.

O4. En analysant l'image d'erreur on constate que le bruit a été complètement éliminé (c'est un autre avantage du filtre de type soft-thresholding par rapport aux filtres de Wiener) mais les contours importants de l'image originale se retrouvent complètement dans l'image d'erreur. Donc les distorsions introduites par le filtre de type soft-thresholding sont plus importantes que les distorsions introduites par le filtre de Wiener. Le programme utilisé pour ces simulations est le suivant :

```
%Imsin_zgad_soft_th.m;
%Les dimensions de l'image à traiter;
a=256; it=6;
%La génération de l'image utile;
sig=readimage('Lenna');
sigi=sig(1:a, 1:a);
%La génération de l'image de bruit;
xzi=35.*randn(a);
% L'image bruitée;
xs1=xzi+sigi;
%Le calcul du rapport signal à bruit init;
einit=sum(sum((sigi-xs1).*(sigi-xs1)))./(a.*a);
PSNRinit=20.*log10(a./sqrt(einit))
%Représentations graphiques initiales;
```
figure(1); autoimage(sigi);
title('image utile');
figure(2); autoimage(xs1);
title('image bruitée');
rezuf=zeros(a);
for m=4:2:20;
f=makeonfilter('Daubechies',m);

%%L’enrichissement par la TODDE;
wc2=fwt2_po(xs1,L,f);
wcd2d=wc2(b./2+1:b,b./2+1:b);

%sigma2 représente l’écart type du bruit;
sigma2=(median(median(abs(wcd2d))))./0.67;

%% Le filtrage;
for p=2:250;
seuil=(1+(p./25)).*sigma2;
wc2n=softthresh(wc2,seuil);

%% L’inversion de la TOD courante;
rez=iwt2_po(wc2n,L,f);

%Le calcul du rapport signal à bruit de sommet
pour la TOD courante;
e=sum(sum((sgi-rez).*(sgi-rez)))./(a.*a);
PSNRinterm(p)=20.*log10(a./sqrt(e));
PSNRinterm(1)=0;
if PSNRinterm(p)<PSNRinterm(p-1)
 break
 end
end
PSNRinterm=PSNRinterm(p-1)
constantdeseuil=seuil./sigma2
sigmabruitinterm=sigma2
rezuf=rezuf+rez;
end

% Le calcul de la TUDDE;
rezufina=rezuf./9;

% Le calcul du rsb de la TUDDE;
e=sum(sum((sigi-rezufina).*(sigirezufina)))./(a.*a);
PSNRo=20.*log10(a./sqrt(e))

% Représentations graphiques finales;
figure(3); autoimage(rezufina);
title('résultat');
figure(4); autoimage(sigi-rezufina);
Un autre filtre non linéaire, proposé par Donoho dans le même article comme le filtre soft-thresholding, [DJ94], est le filtre hard-thresholding.

5.3.2 Le filtre de type hard-thresholding

La relation entrée-sortie pour ce filtre est :

$$\text{hard}(g, \tau) = (|g| - \tau)_+$$ \hspace{1cm} (112)

Dans la suite est présenté un expriment associé au filtre de type hard-thresholding. Le critère d’optimisation (étant dans le cas de ce chapitre la maximisation du rapport signal à bruit de sommet de sortie) demande une autre valeur pour la constante de proportionnalité entre la valeur du seuil du filtre soft-thresholding et l’écart type du bruit. Dans cette expérience la valeur de cette constante sera choisie telle que le rapport signal à bruit de sommet associé à chaque TOD sera maximal. Les résultats obtenus sont présentés dans le Tableau 4. Le tableau a été obtenu en sélectionnant chaque fois un nombre de six itérations pour les TODs. Dans la Figure 13 sont présentées les images obtenues pour la dernière ligne du tableau.

En analysant le tableau on peut faire les observations suivantes.

O1. L’estimation de σ_b par $\hat{\sigma}_b$, basée sur la formule (85), est de bonne qualité pour toutes les valeurs de σ_b et pour toutes les TODs. On a obtenu des résultats similaires aux résultats obtenus dans le cas de filtre soft-thresholding. La variance de cette estimation augmente avec l’augmentation de σ_b.

67
TAB. 4 – Tableau 5.3.2. Les rapports signal à bruit de sommet obtenus en utilisant le filtre de type hard-thresholding dans le domaine des TODs correspondantes aux ondelettes mères à support compact de Daubechies à k moments nuls (correspondant à la sortie k-1) et à la TODDE.

O2. La valeur de la constante de proportionnalité entre la valeur du seuil et la valeur de l’estimation de la variance du bruit augmente avec l’augmentation de σ_b entre la valeur 1.80 (obtenue pour $\sigma_b \leq 15$) et 3.24 (obtenue pour $\sigma_b > 35$). Donc la valeur du seuil du filtre hard-thresholding doit être choisie en accord avec la valeur du rapport signal à bruit de sommet d’entrée. Dans ce cas-ci la règle de trois sigmas peut être utilisée. La variance de la constante de proportionnalité par rapport aux TODs augmentée-t-elle aussi avec l’augmentation de σ_b ? On constate que la dispersion de la meilleure ondelette mère autour de l’ondelette de Daubechies à cinq moments nuls est plus prononcée par rapport au cas du filtre soft-thresholding. Les résultats obtenus en utilisant la meilleure ondelette mère sont chaque fois inférieurs aux résultats obtenus en utilisant la TODDE. Pour les valeurs faibles de σ_b la mesure de la supériorité de la TODDE par rapport à la TOD qui utilise la meilleure ondelette mère est de 3 dB et pour les valeurs fortes de σ_b la mesure de cette supériorité est de 2 dB. Donc l’efficience de l’utilisation de la TOODE est plus importante dans le cas de l’utilisation du filtre de type hard-thresholding par rapport à l’utilisation du filtre soft-thresholding.

<table>
<thead>
<tr>
<th>σ_b</th>
<th>Entée</th>
<th>Sortie1</th>
<th>Sortie2</th>
<th>Sortie3</th>
<th>Sortie4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>TODDE</th>
</tr>
</thead>
</table>
O3. Les valeurs des rapports signal à bruit de sommet de sortie obtenues en utilisant le filtre *hard-thresholding* sont supérieures aux valeurs obtenues en utilisant les filtres de Wiener ou le filtre de type *soft-thresholding*.

O4. En analysant l'image d'erreur on constate que le bruit a été complètement éliminé mais que les contours importants de l'image originale se retrouvent complètement dans l'image d'erreur. Donc les distorsions introduites par le filtre de type *hard-thresholding* sont plus importantes que les distorsions introduites par le filtre de Wiener. Le programme utilisé pour ces simulations est le suivant.

```matlab
%Imsin_zgad_hard_th.m;

it=6;

%Les dimensions de l'image à traiter;

a=256;

b=a./2;

L=log2(b)-it;

%La génération de l'image utile;

sig=readimage('Lenna');

sigi=sig(1:a, 1:a);

%La génération de l'image de bruit;

xzi=35.*randn(a);

% L'image bruitée;
```
xs1=xzi+sigi;

%Le calcul du rapport signal à bruit de
sommet à l’entrée;
einit=sum(sum((sigi-xs1).*(sigi-xs1)))./(a.*a);
PSNRinit=20.*log10(a./sqrt(einit))

%Représentations graphiques initiales;
figure(1);
autoimage(sigi);
title('image utile');
figure(2);
autoimage(xs1);
title('image bruitee');
rezuf=zeros(a);
for m=4:2:20;
f=makeonfilter('Daubechies',m);

%L’enrichissement dans le domaine des
ondelettes;
wc2=fwt2_po(xs1,L,f);
wc2d=wc2(b./2+1:b,.b./2+1:b);

% sigma2 représente l’écart type du bruit;
sigma2=(median(median(abs(wcd2d))))./0.674
5;

% Le filtrage avec le filtre de type hardthresholding:
for p=2:250;
 seuil=(1+(p./25)).*sigma2;
 wc2n=hardthresh(wc2,seuil);
% L'inversion de la TOD courante;
 rez=iwt2_po(wc2n,L,f);
% Le calcul du rapport signal à bruit de
% sommet pour la TOD courante;
 e=sum(sum((sigi-rez).*(sigi-rez)))./(a.*a);
 PSNRinterm(p)=20.*log10(a./sqrt(e));
 PSNRinterm(1)=0;
 if PSNRinterm(p)<PSNRinterm(p-1)
 break
 end
end

PSNRinterm=PSNRinterm(p-1)
constantedeseuil=seuil./sigma2
sigmabruitinterm=sigma2
rezuf=rezuf+rez;
end
Les solutions de filtrage présentées jusqu’ici n’ont pas pris en compte le caractère non-Gaussien du bruit. Dans le paragraphe suivant seront présentées des solutions qui prennent en compte ce caractère.

5.3.3 Solutions qui prennent en compte le caractère non-Gaussien du bruit

Parce que la méthode de sélection de seuil présentée dans le dernier paragraphe est optimale pour des images de bruit dont la densité de probabilité est Gaussienne et parce qu’il y a
des applications où le bruit est non-Gaussien, la formule de calcul du seuil a été corrigée pour le cas non-Gaussien, [JS97]. La nouvelle formule est adaptée à l’échelle (indice de l’itération) de la TOD. Pour le critère de minimisation de l’erreur Min-Max d’approximation, à l’itération \(m\) la valeur du seuil proposée est égale à \(\sigma_m \sqrt{2 \ln N}\), où \(\sigma_m\) représente la déviation standard des coefficients de la TOD de l’image de bruit à cette itération.

La relation (111) montre la nécessité d’utiliser ensemble les valeurs de la variance de l’image utile et de l’image de bruit pour le calcul du seuil.

Un autre filtre de type MAP, utilisé pour le débruitage des images SAR, dans le domaine de la transformée en ondelettes discrète non décimée TODND, est présenté dans [FBB01]. Dans cet article on suppose que les images originales et de bruit sont distribuées selon des lois Gamma (de paramètres différents mais ayant le même nombre de vues \(L\)). Il y a deux types de distributions des coefficients de la TODND d’une image dont les niveaux de gris sont répartis selon une loi Gamma, en accord avec la valeur de l’indice d’itération de la transformée.

\(H_5\). Pour les valeurs petites de l’indice d’itération, les coefficients de la TODND de l’image de bruit sont répartis selon une loi asymétrique,

\(H_6\). Pour les valeurs grandes de l’indice d’itération est considérée une loi Gaussienne.

En comparant la Figure 2 de ce rapport, qui présente la répartition de la loi Gamma (hypothèse acceptée dans [FBB01]) avec les figures 3 et 4, qui présentent différentes hypothèses d’une distribution log-Gamma (qui caractérise la répartition après le calcul du logarithme, opération effectuée dans le cadre de la méthode de débruitage analysée dans ce rapport) on constate le fait que les distributions log-Gamma correspondantes à \(L\) de valeur 1 et 10 sont
plus symétriques que les distributions Gamma correspondant aux mêmes valeurs du nombre de vues, L. Pour L de valeur 100, la distribution log-Gamma est presque une Gaussienne, comme le montre la figure 5.

Dans [ICN02] est prouvée la convergence asymptotique de la densité de probabilité des coefficients de la TOD d’un processus aléatoire à densité de probabilité de premier ordre non-Gaussienne vers une Gaussienne. Ce comportement peut être expliqué à l’aide du théorème limite centrale. Donc les hypothèses H_5 et H_6 peuvent être utilisées dans le cas étudié dans ce rapport aussi (utilisation de la TOD et répartitions de l’image utile et de l’image de bruit selon une loi log-Gamma).

Le filtre MAP proposé dans [FBB01] exploite les modèles (d’image originale et d’image de bruit) basés sur la loi de Pearson. Ceux-ci vérifient les hypothèses H_5 et H_6. C’est un filtre MAP de type marginal aussi. La méthode de filtrage proposée ne prend pas en compte chaque valeur de l’indice d’itération. Pour l’utilisation de la loi de Pearson il faut estimer ses paramètres et pour trouver la relation entrée-sortie du filtre MAP il faut résoudre numériquement une équation algébrique de troisième degré. L’estimation des paramètres de la loi de Pearson se fait localement sur la base des valeurs des niveaux de gris de chaque sous-image, situées dans une certaine fenêtre glissante. Les dimensions de la fenêtre sont prises en fonction de la valeur courante de l’indice d’itération. C’est la seule modalité de prendre en compte l’échelle, proposée dans [FBB01].

Un autre type de filtre MAP marginal a été proposé dans [ATB02]. Dans cet article est utilisée la TOD pour le débruitage des images SAR et le logarithme pour transformer le bruit
multiplicatif dans bruit additif. Les auteurs ont observé, eux aussi, l’asymétrie des densités de probabilités des coefficients des TODs des logarithmes des images originales et de bruit. Ils ont remarqué aussi la décroissance faible vers l’infini de ces distributions par rapport à une loi Gaussienne. Ce genre de distributions s’appelle \textit{heavy-tailed distributions}, en anglais. Pour la modélisation de la densité de probabilité des TODs des logarithmes de l’image utile et de l’image de bruit, dans [ATB02] ont été choisies les lois de probabilité alpha-stables. L’obtention de la relation entrée-sortie du filtre MAP correspondant à ce type de loi de probabilité ne peut pas se faire analytiquement, étant nécessaire de nouveau l’utilisation des méthodes de calcul numérique. Les paramètres de la loi alpha-stable doivent être aussi estimés. Les auteurs de cet article ont remarqué le fait que le logarithme utilisé pour la transformation du bruit multiplicatif dans bruit additif modifie les valeurs des moyennes des images originales et de bruit. C’est le motif pour lequel après le calcul de la TOD1 la moyenne du résultat doit être corrigée. Après, le logarithme doit être inversé.

Malheureusement toutes les solutions présentées dans ce paragraphe font appel aux techniques de calcul numérique qui font les programmes de simulations plus lourds. De plus le contrôle des performances est plus difficile parce qu’il faut prendre en compte les différentes erreurs de calcul introduites par les méthodes de calcul numérique utilisées.

Les modèles marginaux ne peuvent pas modéliser les dépendances statistiques entre les coefficients de la TOD calculés à différentes itérations. Quand même, en analysant la Figure 7, on constate qu’il y a de fortes dépendances entre les coefficients voisins, comme par exemple entre un certain coefficient, son parent (localisé à l’échelle correspondant à l’itération suivante)
et ses voisins géométriques (localisés à la même échelle).

5.3.4 Solutions de filtrage qui prennent en compte l'échelle

Dans [SS02a] est prise en compte seulement la dépendance entre un coefficient (appartenant à une certaine sous-image de détails) et son parent. Ce type de dépendance est représenté à la Figure 14.

L'autre type de dépendance entre un coefficient et ses voisins géométriques correspondant à la même échelle (qui a été envisagé dans le paragraphe de ce rapport dédié à l'étude de filtre de Wiener et dans la présentation des filtres MAP marginaux) est ignorée.

Soit \(s_{1ar} \) le coefficient de détail considéré et \(s_{2ar} \) son parent (le coefficient de détail situé dans la même position mais calculé à l'itération suivante). En analysant la Figure 14, on constate qu'en fait à un coefficient de type parent correspondra une zone de quatre coefficients enfants. C'est le motif pour lequel chaque image contenant des coefficients parents sera expansée pour avoir le même nombre d'éléments que l'image contenant les coefficients
enfants correspondants. Après, les paramètres statistiques des coefficients enfants (moyenne, variance) seront déterminés en utilisant les coefficients parents de même position spatiale et les coefficients enfants voisins, situés dans une fenêtre rectangulaire, centrée sur le coefficient enfant courant (dont les paramètres sont déterminés au moment considéré). Tenant compte de l’équation (95) on peut écrire :

$$s_{1ar} = s_{1r} + b_{1r}$$ \hspace{1cm} (113)

et :

$$s_{2ar} = s_{2r} + b_{2r}$$ \hspace{1cm} (114)

ou :

$$s_{ar} = s_r + b_r$$ \hspace{1cm} (115)

où, on a utilisé les notations :

$$s_{ar} = (s_{1ar}, s_{2ar}); s_r = (s_{1r}, s_{2r}); b_r = (b_{1r}, b_{2r})$$ \hspace{1cm} (116)

L’estimateur MAP standard pour s_r à l’aide de l’observation s_{ar} (perturbée par bruit) est donné par :

$$\hat{s}_r(s_{ar}) = \arg \max \{ \ln(p_{br}(s_{ar} - s_r)p_{sr}(s_r)) \}$$ \hspace{1cm} (117)

qui représente l’équivalence de l’équation (97). Si on suppose que l’image b_r est modélisée par un processus de type bruit blanc Gaussien de moyenne nulle, alors :

$$p_{br}(b_r) = \frac{1}{2\pi\sigma_b^2}e^{-\frac{b_r^2}{2\sigma_b^2}}$$ \hspace{1cm} (118)
Dans la suite on présente deux types de filtres MAP, correspondant à deux modèles différents de l’image s_r : Ces types de filtre MAP ont été analysés dans [SS02a].

Le premier type de filtre MAP en deux dimensions

La densité de probabilité de l’image s_r est dans ce cas-ci de la forme :

$$p_{s_r}(s_r) = \frac{3}{2\pi\sigma^2} e^{-\frac{3}{2\pi\sigma^2\sqrt{(s_{1r})^2+(s_{2r})^2}}}$$

(119)

où s_{1r} représente l’ensemble des coefficients de la r-ième TOD de l’image utile, calculés à la m-ième itération et s_{2r} représente l’ensemble des coefficients de la r-ième TOD de l’image utile, calculés à l’itération suivante.

Ce choix a été inspiré par l’étude des histogrammes de plusieurs images réelles, [SS02a]. A l’aide de la notation $f(s_r) = \ln(p_{s_r}(s_r))$ l’équation (117) avec les densités de probabilité définies dans les relations (118) et (119) prend, dans ce cas-ci, la forme :

$$\dot{s}_r(s_{ar}) = \arg\max\{-\frac{(s_{1ar} - \hat{s}_{1r})^2}{2\sigma^2_{1r}} - \frac{(s_{2ar} - \hat{s}_{2r})^2}{2\sigma^2_{2r}} + f(s_r)\}$$

(120)

Cette forme est équivalente au système d’équations suivant :

$$\frac{s_{1ar} - \hat{s}_{1r}}{\sigma^2_{1r}} + \frac{df}{ds_{1r}}(s_r) = 0$$

$$\frac{s_{2ar} - \hat{s}_{2r}}{\sigma^2_{2r}} + \frac{df}{ds_{2r}}(s_r) = 0$$

(121)

et en notant les deux dérivés contenus dans les membres droits des équations du système par f_1 et f_2 on obtient :

$$\frac{s_{1ar} - \hat{s}_{1r}}{\sigma^2_{1r}} + f_1(s_r) = 0$$

79
\[\frac{s_{2ar} - \hat{s}_{2r}}{\sigma_b^2} + f_2(s_r) = 0 \] (122)

ou, en tenant compte de la définition de la fonction \(f \) :

\[f(s_r) = \ln p_{s_r}(s_r) \] (123)

et de la densité de probabilité exprimée dans la relation (119) :

\[\frac{\hat{s}_{1r} - s_{1ar}}{\sigma_b^2} - \frac{\sqrt{3}}{\sigma} \frac{\hat{s}_{1r}}{\sqrt{s_{1ar}^2 + s_{2ar}^2}} = 0 \]

\[\frac{\hat{s}_{2r} - s_{2ar}}{\sigma_b^2} - \frac{\sqrt{3}}{\sigma} \frac{\hat{s}_{2r}}{\sqrt{s_{1ar}^2 + s_{2ar}^2}} = 0 \] (124)

La première solution du dernier système :

\[\hat{s}_{1r} = \frac{\sqrt{(s_{1ar})^2 + (s_{2ar})^2} - \sqrt{3} \sigma^2}{\sqrt{(s_{1ar})^2 + (s_{2ar})^2}} \cdot s_{1ar} \] (125)

représente la relation entrée-sortie du premier filtre de type MAP en deux dimensions présenté dans [SS02a]. Pour pouvoir utiliser ce filtre il faut estimer les écarts types \(\sigma_b \) et \(\sigma \). L’écart type \(\sigma_b \) peut être estimé en utilisant la relation (85). Pour l’estimation de l’écart type \(\sigma \) il faut utiliser les relations (86), (87) et (88). Les dimensions de la fenêtre glissante restent à être trouvées expérimentalement. Le principal désavantage du modèle présenté dans la relation (119) et le fait qu’il ne prenne pas en compte la dépendance de la variance de l’image \(s_r \) par rapport à l’indice de l’itération.

Sur le site web des auteurs de l’article [SS02a], http://taco.poly.edu/WaveletSoftware/ on peut trouver des programmes Matlab de simulation du premier type de filtre MAP en deux
dimensions. Dans la suite est présenté un expérimente réalisé en utilisant ces programmes. Ce filtre est appelé par ses auteurs *bshrink*. La transformée en ondelettes utilisée dans cet expérimente est la TOD calculée en utilisant une ondelette mère très symétrique proposée par Kingsbury. Les dimensions de la fenêtre glissante utilisée pour l’estimation de σ sont de 7x7. La valeur prise pour σ_b dans cette expérience est de 25. Donc la valeur du rapport signal à bruit de sommet d’entrée est de 20.2 dB. La valeur du rapport signal à bruit de sommet obtenue à la sortie est de 30.225 dB. C’est la plus grande valeur obtenue dans notre étude jusqu’ici, étant plus grande que la valeur obtenue en utilisant le filtre *hard-thresholding* avec 2.3 dB.

Dans la Figure 15 sont présentés les résultats obtenus avec le filtre *bshrink*, en utilisant l’ondelette mère proposée par Kingsbury. Il s’agit de l’image originale (de taille 512x512), de l’image bruitée et de l’image filtrée. On constate en analysant l’image d’erreur que le bruit a été entièrement éliminé et que les distorsions introduites ne sont pas importantes.

Dans la suite on présente une nouvelle expérience pour l’étude du filtre *bshrink*, pour pouvoir comparer ses performances dans le contexte de cette étude. On utilise les neuf ondelettes mères de Daubechies de support le plus court possible, ayant un nombre de moments nuls entre 2 et 10 et la TODDE correspondante. C’est le même type d’expérience comme celles présentées dans les paragraphes antérieurs de ce chapitre. Les seules différences sont :
- la taille de l’image est de 512x512 dans ce cas-ci,
- le nombre d’itérations effectuées pour le calcul de chaque TOD est de 4.

Les résultats obtenus sont présentés dans le Tableau 5.
<table>
<thead>
<tr>
<th>σ_b</th>
<th>Entrée</th>
<th>Sortie1</th>
<th>Sortie2</th>
<th>Sortie3</th>
<th>Sortie4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>TODEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28.161</td>
<td>33.917</td>
<td>34.108</td>
<td>34.166</td>
<td>34.209</td>
<td>34.228</td>
<td>34.227</td>
<td>34.193</td>
<td>34.212</td>
<td>34.212</td>
<td>35.006</td>
</tr>
<tr>
<td>15</td>
<td>24.636</td>
<td>31.932</td>
<td>32.167</td>
<td>32.210</td>
<td>32.287</td>
<td>32.288</td>
<td>32.269</td>
<td>32.262</td>
<td>32.273</td>
<td>32.281</td>
<td>33.141</td>
</tr>
<tr>
<td>30</td>
<td>20.210</td>
<td>29.815</td>
<td>29.867</td>
<td>29.848</td>
<td>29.887</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.577</td>
</tr>
</tbody>
</table>

Tab. 5 – Tableau 5.3.4. Les rapports signal à bruit de sommet obtenus en utilisant le filtre de type $bistrink$ dans le domaine des TODs correspondantes aux ondelettes mères à support compact minimal de Daubechies à k moments nuls (correspondant à la sortie $k-1$) et à la TODDE.

En comparant les valeurs de la dernière colonne du tableau avec les valeurs correspondantes, présentées dans [SS02b], on peut observer la supériorité de la TODDE par rapport à la TOD calculée en utilisant l’ondelette mère de Kingsbury. Les images spécifiques pour la ligne correspondante à $\sigma_b = 25$ sont présentées dans les figures suivantes. Ces images peuvent être comparées avec les images présentées dans la Figure 15. Du point de vue de la valeur du rapport signal à bruit de sortie, les images présentées dans la Figure 16, qui correspondent à une valeur de 30.722 dB, sont supérieures (le rapport signal à bruit correspondant aux images de la Figure 15 étant de 30.225 dB).

En analysant le tableau et la dernière figure on peut faire les observations suivantes.

01. On constate que pour les valeurs petites du σ_b la meilleure ondelette mère est celle de Daubechies à six moments nuls. Pour les valeurs grandes du σ_b la meilleure ondelette mère est celle de Daubechies à sept moments nuls. Les résultats obtenus en utilisant la meilleure
FIG. 16 – en haut, à gauche : image bruitée, en haut, à droite : image résultée, en bas : image d’erreur.
ondelette mère sont chaque fois inférieurs aux résultats obtenus en utilisant la TODDE. Pour les valeurs faibles de σ_b la mesure de la supériorité de la TODDE par rapport à la TOD qui utilise la meilleure ondelette mère est de 0.8 dB et pour les valeurs fortes de σ_b la mesure de cette supériorité est de 0.9 dB. Chaque fois les résultats obtenus avec la TOD calculée à l’aide de la meilleure ondelette mère sont inférieurs aux résultats obtenus en utilisant la TOD calculée à l’aide de l’ondelette mère de Kingsbury. Ce comportement est expliqué par le manque de symétrie des ondelettes de Daubechies utilisées. En effet ces ondelettes ont les supports les plus courts possibles pour le nombre des moments nuls spécifique mais ne sont pas du tout symétriques. Il y a aussi une autre famille d’ondelettes appelées Symmlets, qui ont des supports de longueur minimale pour un nombre de moments nuls donné mais qui sont le plus symétrique possible. Cette famille possède quatre membres. Dans le Tableau 5 quelques cellules de la ligne correspondant à $\sigma_b = 25$, sont divisées en deux. En haut se trouve le résultat obtenu en utilisant l’ondelette de type Daubechies et en bas l’ondelette de type Symmlets ayant le même nombre de moments nuls. On constate que chaque fois le résultat obtenu en utilisant l’ondelette de type Symmlets est mieux. Mais l’augmentation de la diversité obtenue en utilisant les ondelettes de type Symmlets est inférieure à l’augmentation de la diversité réalisée par les ondelettes de Daubechies (la TODDE calculée à l’aide de Symmlets conduit à un rapport signal à bruit de sommet à la sortie inférieur au rapport signal à bruit de sommet de sortie obtenu en utilisant les ondelettes de Daubechies) parce que le nombre d’ondelettes de type Symmlets est inférieur au nombre d’ondelettes de type Daubechies.

O2. Les valeurs des rapports signal à bruit de sommet de sortie obtenues en utilisant le
filtre *bistrink* sont les meilleures obtenues dans ce rapport jusqu'ici.

03. En analysant l'image d'erreur on constate que le bruit a été pratiquement complètement éliminé mais qu'une partie des contours de l'image originale se retrouvent dans l'image d'erreur. Donc les distorsions introduites par le filtre de type *bistrink* ne sont pas nulles.

04. L'augmentation du nombre d'itérations utilisées pour le calcul de chaque TOD à une valeur supérieure à 4 conduit à la dégradation significative des performances du filtre *bistrink*.

Le programme utilisé pour ces simulations est basé sur les fonctions suivantes :

```matlab
% Fonction principale
% Utilisation :
% main
% ENTREE :
% Raw Lena image
% SORTIE :
% la valeur du rapport signal à bruit de sommet PSNR de l'image débruitée
% La lecture de l'image utile
fid = fopen('lena','r');
s = fread(fid,[512 512],'unsigned char');
fclose(fid)
N = 512;
```

86
% La variance du bruit

sigma_n = 25;

n = sigma_n*randn(N);

% le bruit est ajouté

x = s + n;

% le calcul du rapport signal à bruit de sommet à l'entrée

PSNRInit = 20*log10(256/std(n(:)))

% L'algorithme de débruitage basé sur l'utilisation du filtre

bishrink;

% et l'estimation locale de la variance de l'image utile

y = denoising_dwtm1(x);

% Le calcul de l'erreur

err = s - y;

% Le calcul du rapport signal à bruit de sommet à la sortie

PSNR = 20*log10(256/std(err(:)))

function y = denoising_dwtm1(x)

% Algorithme de débruitage basé sur le filtre bishrink et

l'estimation locale;

% de la variance de l'image utile

% Utilisation :

% y = denoising_dwtm(x)
% ENTREE :
% x - une image bruitée
% SORTIE :
% y - l'image correspondant debruitée
% Le choix de la fenêtre d'analyse utilisée pour l'estimation de
% la variance;
% et le filtre pour le calcul de la variance
windowsize = 7;
windowfilt = ones(1,windowsize)/windowsize;
% La lecture de l'image utile
fid = fopen('lena','r');
s = fread(fid,[512 512],'unsigned char');
fclose(fid)
% L'initialisation des paramètres;
% L'initialisation du nombre d'itération effectuées pour le
% calcul de chaque TDD
L = 4;
% La taille de l'image à traiter
N = length(x);
% le calcul de la TDDDE
rezu=zeros(N);
for m=4:2:20
56
f=makeonfilter('Daubechies',m);
W = dwt2Dm(x,L,f);
% L’estimation de la variance du bruit
tmp = W{1}{3};
Nsig = median(abs(tmp(:)))/0.6745;
% L’estimation de la variance des pixels de l’image contenant
les coefficients
% enfants
for scale = 1:L-1
for dir = 1:3
% Les coefficients bruités
Y_coefficient = W{scale}{dir};
% Les coefficients parents bruités
Y_parent = W{scale+1}{dir};
% l’extension de l’image des coefficients parents pour devenir de même
% taille avec l’image des coefficients enfants
Y_parent = expand(Y_parent);
% L’estimation locale de la variance de l’image utile
Wsig = conv2(windowfilt,windowfilt,(Y_coefficient).^2,'same');
SSig = sqrt(max(Wsig-Nsig.^2,eps));

% L'estimation de la valeur du seuil
T = sqrt(3)*Nsig.^2./Ssig;

% Le filtrage avec le filtre bishrink
W{scale}{dir} = bishrink(Y_coefficient,Y_parent,T);
end
end

% Le calcul de la TOD inversé
rez = idwt2Dm(W,L,f);
rezu=rezu+rez;
errinter = s - rez;

% Le calcul du rapport signal à bruit de sommet pour chaque TOD
PSNRinter = 20*log10(256/std(errinter(:)))
end

% Le calcul de la TODDE
y=rezu./9;

function w = dwt2Dm(x, J, f)

% TOD
% UTILISATION:
% w = dwt2Dm(x, stages, f)
% ENTREE:
% x - matrice de taille N
% 1) N est une puissance de 2
% 2) N >= 2^(J-1)*length(f)
% J - donne le nombre d'itérations
% f - filtre
% SORTIE:
% w - cell array des coefficients de la TUD

% EXEMPLE:
% f=makeonfilter('Daubechies',16);
% x = rand(128,128);
% J = 6;
% w = dwt2Dm(x,J,f);
% y = idwt2Dm(w,J,f);
% err = x - y;
% max(max(abs(err)))
% L'identification de la taille de l'image à traiter
[ma,na] = size(x);
% Le calcul de la TUD
cw=fwt2_po(x,J,f);
% L'identification des sous-images d'approximation de détails horizontaux,
% verticaux et diagonaux

for k = 1:J
 w{k}{1}=cw(1:ma./(2.^k),ma./(2.^k)+1:ma./(2.^k-1));
 w{k}{2}=cw(ma./(2.^k)+1:ma./(2.^k-1),1:ma./(2.^k));
 w{k}{3}=cw(ma./(2.^k)+1:ma./(2.^k-1),ma./(2.^k)+1:ma./(2.^k-1));
end

w{J+1}=cw(1:ma./(2.^J),1:ma./(2.^J));

defunction [y] = expand(x)
 [N,M] = size(x);
 N = N*2;
 M = M*2;
 y = zeros(N,M);
 y(1:2:N,1:2:M) = x;
 y(2:2:N,2:2:M) = x;
 y(1:2:N,2:2:M) = x;
 y(2:2:N,1:2:M) = x;
function [w1] = bishrink(y1,y2,T)
 % le filtre bishrink
 % Utilisation :
% [w1] = bishrink(y1,y2,T)

% ENTREE :
% y1 - la valeur d’un coefficient bruité
% y2 - la valeur du coefficient parent correspondant
% T - valeur de seuil

% SORTIE :
% w1 - le coefficient debruité

R = sqrt(abs(y1).^2 + abs(y2).^2);
R = R - T;
R = R .* (R > 0);
w1 = y1 .* R./(R+T);

function y = idwt2Dm(w, J, f)

% TODI
%
% Utilisation:
% y = idwt2Dm(w, J, f)

% ENTREE:
% w - coefficient de la TUD
% J - caractérise le nombre d’itérations
% f - filtre

% SORTIE:
% y - array de sortie
% Voir dwt2Dm
%

o = w{J+1};
for k = J:-1:1
 o=[o,w{k}{1};w{k}{2},w{k}{3}];
end
y=iwt2_po(o,J,f);

Le deuxième type de filtre MAP en deux dimensions

Le modèle présenté dans la relation (119) ne prend pas en compte l’échelle parce qu’il suppose le même écart type de la TOD de l’image utile, s_r, pour les deux itérations consécutives d’indice m et $m+1$.

Pour pallier ce désavantage on peut compléter le modèle présenté dans la relation (119) en obtenant le modèle suivant :

$$p_{s_r}(s_r) = \frac{3}{2\pi\sigma_1\sigma_2} e^{-\sqrt{3}\sqrt{\left(\frac{s_1 r}{\sigma_1}\right)^2 + \left(\frac{s_2 r}{\sigma_2}\right)^2}}$$ \hspace{1cm} (126)

où σ_1 est l’écart type de l’image s_{1r} qui représente l’ensemble des coefficients de la r-ième TOD de l’image utile, calculés à la m-ième itération et σ_2 est l’écart type de l’image s_{2r} qui représente l’ensemble des coefficients de la r-ième TOD de l’image utile, calculés à l’itération suivante. Comme a déjà été montré dans le chapitre antérieur la relation entre les deux écarts
types est :

\[\sigma_2 = 4\sigma_1 \] (127)

La fonction \(f \) qui correspond à ce modèle a l’expression :

\[f(s_r) = -\sqrt{3} \sqrt{\left(\frac{s_{1r}}{\sigma_1} \right)^2 + \left(\frac{s_{2r}}{\sigma_2} \right)^2} \] (128)

Ses dérivés partiels ont la forme :

\[f_1(s_r) = -\frac{\sqrt{3}}{\sigma_1^2} \frac{s_{1r}}{\sqrt{\left(\frac{s_{1r}}{\sigma_1} \right)^2 + \left(\frac{s_{2r}}{\sigma_2} \right)^2}} \]

\[f_2(s_r) = -\frac{\sqrt{3}}{\sigma_2^2} \frac{s_{2r}}{\sqrt{\left(\frac{s_{1r}}{\sigma_1} \right)^2 + \left(\frac{s_{2r}}{\sigma_2} \right)^2}} \] (129)

et le système d’équations, dont la première solution représente la relation entrée-sortie du deuxième filtre MAP, prend la forme :

\[\hat{s}_{1r} \cdot \left(1 + \frac{\sqrt{3}}{\sigma_1^2} \left(\frac{\sigma_b}{\sigma_1^2} \right) \right) = s_{1ar} \]

\[\hat{s}_{2r} \cdot \left(1 + \frac{\sqrt{3}}{\sigma_2^2} \left(\frac{\sigma_b}{\sigma_2^2} \right) \right) = s_{2ar} \] (130)

où, on a utilisé la notation :

\[m_o = \sqrt{\left(\frac{\hat{s}_{1r}}{\sigma_1} \right)^2 + \left(\frac{\hat{s}_{2r}}{\sigma_2} \right)^2} \] (131)

Malheureusement il n’y a pas une solution analytique simple pour le système d’équations de la relation (130). Pour trouver la solution approximative dans [SS02a] est proposée l’utilisation des méthodes numériques de substitution successives ou de Newton-Raphson.
5.4 Conclusion

La meilleure solution de filtrage présentée plus haut est celle analysée dans le paragraphe 5.3.4.1. Elle est basée sur un modèle pour chaque TOD d'image non bruitée, utilisée dans le cadre de la TODDE, décrit dans la relation (119), établi expérimentalement, en utilisant un grand nombre d’images diverses. Ce filtrage est décrit dans la relation (125). Cette méthode de filtrage est en accord avec les hypothèses considérées dans ce rapport concernant l’indépendance entre l’image utile et le bruit et le caractère blanc du bruit de type speckle.

La relation entrée-sortie du filtre bishrink, [Send.02(1)], est présentée dans la figure suivante.

On constate sa parfaite symétrie par rapport au point (0,0). Le filtre bishrink ne modifie pas une image dont les pixels ont tous des valeurs nulles. Parce que toutes les sous-images de détails d’une certaine TOD sont de moyenne nulle, et parce que dans la méthode de débruitage
décrite dans ce rapport on ne filtre pas les sous-images d’approximation, on peut affirmer que la moyenne de chaque sous-image de détails filtrée est aussi nulle. Le filtre bishrink ne modifie pas la moyenne des images qu’il traite. Donc, c’est un estimateur non biaisé. La relation (125) peut être mise sous la forme :

$$(s_{1r})^2 = \begin{cases} \left(\frac{\sqrt{(s_{1ar})^2 + (s_{2ar})^2} - \sqrt{\frac{3}{2}}}{s_{1ar}}\right)^2 \cdot (s_{1ar})^2 & \text{si} \quad \sqrt{(s_{1ar})^2 + (s_{2ar})^2} \leq \frac{\sqrt{3}}{\sigma} \\ 0 & \text{sinon} \end{cases}$$

ou :

$$(s_{1r})^2 \leq \begin{cases} (s_{1ar})^2 & \text{si} \quad \sqrt{(s_{1ar})^2 + (s_{2ar})^2} \leq \frac{\sqrt{3}}{\sigma} \\ 0 & \text{sinon} \end{cases}$$

En prenant la moyenne statistique dans les deux membres de la dernière relation on peut écrire :

$$\sigma_{1sr}^2 \leq \sigma_{s_{1ar}}^2$$

Donc l’estimateur bishrink est efficient. Son efficience a été appréciée dans le paragraphe 5.3.4.1. à l’aide d’une simulation qui a prouvé que ce filtre est le meilleur parmi les filtres qui ont été étudiés dans ce chapitre. En conclusion, la méthode de débruitage proposée dans ce rapport a les pas suivants :

1. On calcule le logarithme de l’image à traiter.
2. On calcule la TODDE du résultat en faisant pour chaque TOD un nombre M de trois ou quatre itérations.
3. On filtre les sous-images de détail de chaque TOD en utilisant le filtre *bishrink*.

4. On calcule les TODI correspondantes.

5. On calcule la moyenne arithmétique des résultats obtenus.

6. On inverse le logarithme.

L’opération de calcul de la moyenne, prévue pour le cinquième pas est utile aussi pour le débruitage. En tenant compte du fait que le bruit resté après les filtrages avec *bishrink* est blanc, sa variance sera réduite de trois fois par le système de calcul de la moyenne (dont la longueur de la fenêtre est de 9). Pour le traitement des images SONAR, tenant compte de leur format, il semble utile de travailler avec des images de dimensions 1024x1024. Pour ce type d’images un choix utile pour la valeur du M est de 5. Ce sont les hypothèses qu’on utilisera dans le traitement des images obtenues de la part d’IFREMER. Dans la suite on présente le résultat obtenu en utilisant la méthode de débruitage proposée pour le traitement de l’image Swansea.

Une mesure du débruitage des zones homogènes d’une image bruitée avec bruit de *speckle* est l’augmentation du nombre de vues en sortie par rapport au nombre de vues en entrée. La région choisie pour le calcul du nombre de vues est délimitée sur la figure antérieure par les bords de gauche et de bas et par les deux lignes jaunes. La formule de calcul du nombre de vue de la région considérée est :

\[
L = \left(\frac{\text{moyenne}}{\text{ecart type}} \right)^2
\]
FIG. 18 – Le résultat obtenu en appliquant le filtre bishrink dans le domaine de la TODDE. L'image à traiter est celle de gauche et le résultat du traitement est présenté dans l'image de droite.

La valeur obtenue, en divisant les valeurs des nombres de vue des images de sortie (3.3342) et d'entrée (22.4283) correspondantes aux deux régions marquées sur les images de la figure 18, est de 6.73. Parce qu'il s'agit d'une région homogène, cette augmentation du nombre de vues, n'est pas une mesure des distorsions introduites par la méthode de débruitage choisie. Le rapport signal à erreur quadratique moyenne à la sortie est une mesure globale de la qualité du débruitage réalisée, qui prend en compte les distorsions introduites aussi. Pour l'exemple présenté dans la figure 18, la valeur de ce rapport est de 7.8175 dB. Cette valeur est comparable avec la différence entre le rapport signal à bruit de sommet de sortie et d'entrée présentée dans le tableau 5.3.4.1.1, obtenue pour un écart type du bruit d'entrée de valeur 10. On peut donc affirmer que le calcul du logarithme n'a pas détérioré les performances du
filtre *bisshrink*. Dans la figure suivante est présentée la différence entre les images de la figure antérieure.

En analysant cette dernière image on constate qu'une grande partie du bruit a été éliminée. Malheureusement il y a aussi des détails de l'image utile qui peuvent être aperçus dans cette dernière image. En appliquant la méthode de débruitage proposée pour le traitement de l'image 0072.02 de la campagne HUDSAR on obtient les résultats suivants. L'image à traiter est présentée à la figure 20. Le résultat de l’application de la méthode de débruitage peut être vu à la figure 21. La différence de ces deux images est présentée à la figure 22. Pour mieux apprécier la qualité du débruitage dans la figure 23. sont comparés les découpages de la même région avant et après le débruitage.

On peut facilement constater que la méthode de débruitage n’introduit pas des distorsions.
FIG. 20 – L’image à traiter.

FIG. 21 – L’image debruitée.
FIG. 22 – L'image de différence entre l'image à traiter et le résultat du traitement.

FIG. 23 – L'effet de la méthode de débruitage proposée sur une région découpée de l'image à traiter.
Malgré le fait que le speckle n’est pas entièrement développé, on peut constater, en analysant l’image de différence, présentée à la figure 22, qu’une grande partie du bruit a été éliminée par la méthode de débruitage proposée. Quand même il y a encore des points blancs, brillants sur l’image de la figure 23. Heureusement, leur densité est plus faible que dans le cas de la figure 22. La figure 23 confirme encore une fois le manque de distorsions de la méthode de filtrage proposée et sa capacité d’éliminer le bruit.

Références

